Diffusion models for multivariate subsurface generation and efficient probabilistic inversion
- URL: http://arxiv.org/abs/2507.15809v1
- Date: Mon, 21 Jul 2025 17:10:16 GMT
- Title: Diffusion models for multivariate subsurface generation and efficient probabilistic inversion
- Authors: Roberto Miele, Niklas Linde,
- Abstract summary: Diffusion models offer stable training and state-of-the-art performance for deep generative modeling tasks.<n>We introduce a likelihood approximation accounting for the noise-contamination that is inherent in diffusion modeling.<n>Our tests show significantly improved statistical robustness, enhanced sampling of the posterior probability density function.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diffusion models offer stable training and state-of-the-art performance for deep generative modeling tasks. Here, we consider their use in the context of multivariate subsurface modeling and probabilistic inversion. We first demonstrate that diffusion models enhance multivariate modeling capabilities compared to variational autoencoders and generative adversarial networks. In diffusion modeling, the generative process involves a comparatively large number of time steps with update rules that can be modified to account for conditioning data. We propose different corrections to the popular Diffusion Posterior Sampling approach by Chung et al. (2023). In particular, we introduce a likelihood approximation accounting for the noise-contamination that is inherent in diffusion modeling. We assess performance in a multivariate geological scenario involving facies and correlated acoustic impedance. Conditional modeling is demonstrated using both local hard data (well logs) and nonlinear geophysics (fullstack seismic data). Our tests show significantly improved statistical robustness, enhanced sampling of the posterior probability density function and reduced computational costs, compared to the original approach. The method can be used with both hard and indirect conditioning data, individually or simultaneously. As the inversion is included within the diffusion process, it is faster than other methods requiring an outer-loop around the generative model, such as Markov chain Monte Carlo.
Related papers
- ItDPDM: Information-Theoretic Discrete Poisson Diffusion Model [5.24776944932192]
We introduce the Information-Theoretic Discrete Poisson Diffusion Model (ItDPDM), inspired by photon arrival process.<n>Central to our approach is an information-theoretic Poisson Reconstruction Loss (PRL) that has a provable exact relationship with the true data likelihood.<n>ItDPDM attains superior likelihood estimates and competitive generation quality-demonstrating a proof of concept for distribution-robust discrete generative modeling.
arXiv Detail & Related papers (2025-05-08T09:29:05Z) - Continuous Diffusion Model for Language Modeling [57.396578974401734]
Existing continuous diffusion models for discrete data have limited performance compared to discrete approaches.<n>We propose a continuous diffusion model for language modeling that incorporates the geometry of the underlying categorical distribution.
arXiv Detail & Related papers (2025-02-17T08:54:29Z) - Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.<n>Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - Distillation of Discrete Diffusion through Dimensional Correlations [21.078500510691747]
"Mixture" models are capable of treating dimensional correlations while remaining scalable.<n>Loss functions enable the mixture models to distill such many-step conventional models into just a few steps by learning the dimensional correlations.<n>Results show the effectiveness of the proposed method in distilling pretrained discrete diffusion models across image and language domains.
arXiv Detail & Related papers (2024-10-11T10:53:03Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Latent diffusion models for parameterization and data assimilation of facies-based geomodels [0.0]
Diffusion models are trained to generate new geological realizations from input fields characterized by random noise.
Latent diffusion models are shown to provide realizations that are visually consistent with samples from geomodeling software.
arXiv Detail & Related papers (2024-06-21T01:32:03Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
We introduce an algorithm leveraging the uniformization of continuous Markov chains, implementing transitions on random time points.
Our results align with state-of-the-art achievements for diffusion models in $mathbbRd$ and further underscore the advantages of discrete diffusion models in comparison to the $mathbbRd$ setting.
arXiv Detail & Related papers (2024-02-12T22:26:52Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Diffusion Models in Vision: A Survey [73.10116197883303]
A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage.<n> Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens.
arXiv Detail & Related papers (2022-09-10T22:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.