論文の概要: Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo
Labelling
- arxiv url: http://arxiv.org/abs/2311.00430v1
- Date: Wed, 1 Nov 2023 10:45:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-02 14:12:13.100390
- Title: Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo
Labelling
- Title(参考訳): Distil-Whisper:大規模擬似ラベリングによるロバストな知識蒸留
- Authors: Sanchit Gandhi, Patrick von Platen, Alexander M. Rush
- Abstract要約: Distil-Whisperは投機的復号化のためにWhisperとペアで設計されており、2倍のスピードアップを実現している。
Distil-Whisperは5.8倍高速で、パラメータは51%少ない。
この領域におけるさらなる研究を促進するため、トレーニングコード、推論コード、モデルが一般に公開されています。
- 参考スコア(独自算出の注目度): 75.74809713084282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the size of pre-trained speech recognition models increases, running these
large models in low-latency or resource-constrained environments becomes
challenging. In this work, we leverage pseudo-labelling to assemble a
large-scale open-source dataset which we use to distill the Whisper model into
a smaller variant, called Distil-Whisper. Using a simple word error rate (WER)
heuristic, we select only the highest quality pseudo-labels for training. The
distilled model is 5.8 times faster with 51% fewer parameters, while performing
to within 1% WER on out-of-distribution test data in a zero-shot transfer
setting. Distil-Whisper maintains the robustness of the Whisper model to
difficult acoustic conditions, while being less prone to hallucination errors
on long-form audio. Distil-Whisper is designed to be paired with Whisper for
speculative decoding, yielding a 2 times speed-up while mathematically ensuring
the same outputs as the original model. To facilitate further research in this
domain, we make our training code, inference code and models publicly
accessible.
- Abstract(参考訳): 事前学習された音声認識モデルのサイズが大きくなると、これらの大きなモデルを低レイテンシやリソース制約のある環境で実行することは困難になる。
本研究では,pseudo-labellingを利用して,whisperモデルを用いた大規模オープンソースデータセットを,ditil-whisperと呼ばれるより小さな変種に拡張する。
単純な単語誤り率 (WER) ヒューリスティックを用いて, トレーニングのための高品質な擬似ラベルのみを選択する。
蒸留モデルは51%のパラメータで5.8倍高速であり、一方ゼロショット転送環境では分布外試験データで1%以内の速度で蒸留する。
Distil-Whisper は、Whisper モデルの頑丈さを難聴な音響条件に維持する一方で、長めのオーディオの幻覚誤差も少なくする。
Distil-Whisperは投機的復号化のためにWhisperと組み合わせて設計されており、元のモデルと同じ出力を数学的に保証しながら2倍のスピードアップを実現している。
この領域のさらなる研究を促進するために、トレーニングコード、推論コード、モデルを公開アクセス可能にします。
関連論文リスト
- Contextual Biasing to Improve Domain-specific Custom Vocabulary Audio Transcription without Explicit Fine-Tuning of Whisper Model [0.0]
OpenAIのWhisper Automated Speech Recognitionモデルでは、さまざまなデータセットやドメインをまたいだ一般化が優れている。
モデルパラメータを明示的に微調整したり変更したりすることなく、転写精度を向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-10-24T01:58:11Z) - Robust Data Pruning under Label Noise via Maximizing Re-labeling
Accuracy [34.02350195269502]
我々は再ラベルでデータプルーニングの問題を定式化する。
そこで本研究では,すべてのトレーニング例の局所的信頼度を最大化する,新しいデータプルーニングアルゴリズムPrune4Relを提案する。
論文 参考訳(メタデータ) (2023-11-02T05:40:26Z) - Multi-scale Diffusion Denoised Smoothing [79.95360025953931]
ランダムな平滑化は、大規模モデルに敵対的ロバスト性を提供する、いくつかの具体的なアプローチの1つになっている。
本報告では, 分割平滑化におけるロバスト性と精度との現在のトレードオフに対処するスケーラブルな手法を提案する。
提案手法と拡散微細調整を併用したマルチスケール平滑化手法により,高騒音レベルで高い信頼性のロバスト性が得られることを示す。
論文 参考訳(メタデータ) (2023-10-25T17:11:21Z) - Combating Label Noise With A General Surrogate Model For Sample
Selection [84.61367781175984]
本稿では,視覚言語サロゲートモデルCLIPを用いて,雑音の多いサンプルを自動的にフィルタリングする手法を提案する。
提案手法の有効性を実世界および合成ノイズデータセットで検証した。
論文 参考訳(メタデータ) (2023-10-16T14:43:27Z) - Boosting Fast and High-Quality Speech Synthesis with Linear Diffusion [85.54515118077825]
本稿では, 常微分方程式に基づく線形拡散モデル(LinDiff)を提案する。
計算複雑性を低減するため、LinDiffでは、入力信号を小さなパッチに分割するパッチベースの処理アプローチを採用している。
我々のモデルは、より高速な合成速度で自己回帰モデルに匹敵する品質の音声を合成することができる。
論文 参考訳(メタデータ) (2023-06-09T07:02:43Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
ノイズの多いラベルからの学習は、実際のアプリケーションのための機械学習において、重要かつ長年にわたる問題である。
本稿では,生成モデルの観点からラベルノイズ問題を再構成する。
我々のモデルは、標準的な実世界のベンチマークデータセットで新しいSOTA(State-of-the-art)結果を達成する。
論文 参考訳(メタデータ) (2023-05-31T03:01:36Z) - ProDiff: Progressive Fast Diffusion Model For High-Quality
Text-to-Speech [63.780196620966905]
本稿では,高品質テキスト合成のためのプログレッシブ高速拡散モデルであるProDiffを提案する。
ProDiffはクリーンデータを直接予測することでデノナイジングモデルをパラメータ化し、サンプリングを高速化する際の品質劣化を回避する。
評価の結果,高忠実度メル-スペクトログラムの合成にProDiffは2回しか要しないことがわかった。
ProDiffは1つのNVIDIA 2080Ti GPU上で、サンプリング速度をリアルタイムより24倍高速にする。
論文 参考訳(メタデータ) (2022-07-13T17:45:43Z) - Language Models in the Loop: Incorporating Prompting into Weak
Supervision [11.10422546502386]
本稿では,ラベル付きトレーニングデータに制限がある場合に,大規模事前学習言語モデルを新しいタスクに適用するための新しい戦略を提案する。
典型的にゼロショットや少数ショットの方法でモデルを適用する代わりに、弱い監督フレームワークにおける関数のラベル付けの基盤としてモデルを扱います。
論文 参考訳(メタデータ) (2022-05-04T20:42:40Z) - Learning from Noisy Labels for Entity-Centric Information Extraction [17.50856935207308]
エンティティ中心の情報抽出のための単純な共正規化フレームワークを提案する。
これらのモデルはタスク固有の損失と共同最適化され、同様の予測を生成するために正規化される。
結局のところ、トレーニングされたモデルのいずれかを推論に利用できます。
論文 参考訳(メタデータ) (2021-04-17T22:49:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。