Progressive Recurrent Network for Shadow Removal
- URL: http://arxiv.org/abs/2311.00455v1
- Date: Wed, 1 Nov 2023 11:42:45 GMT
- Title: Progressive Recurrent Network for Shadow Removal
- Authors: Yonghui Wang, Wengang Zhou, Hao Feng, Li Li, Houqiang Li
- Abstract summary: Single-image shadow removal is a significant task that is still unresolved.
Most existing deep learning-based approaches attempt to remove the shadow directly, which can not deal with the shadow well.
We propose a simple but effective Progressive Recurrent Network (PRNet) to remove the shadow progressively.
- Score: 99.1928825224358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-image shadow removal is a significant task that is still unresolved.
Most existing deep learning-based approaches attempt to remove the shadow
directly, which can not deal with the shadow well. To handle this issue, we
consider removing the shadow in a coarse-to-fine fashion and propose a simple
but effective Progressive Recurrent Network (PRNet). The network aims to remove
the shadow progressively, enabing us to flexibly adjust the number of
iterations to strike a balance between performance and time. Our network
comprises two parts: shadow feature extraction and progressive shadow removal.
Specifically, the first part is a shallow ResNet which constructs the
representations of the input shadow image on its original size, preventing the
loss of high-frequency details caused by the downsampling operation. The second
part has two critical components: the re-integration module and the update
module. The proposed re-integration module can fully use the outputs of the
previous iteration, providing input for the update module for further shadow
removal. In this way, the proposed PRNet makes the whole process more concise
and only uses 29% network parameters than the best published method. Extensive
experiments on the three benchmarks, ISTD, ISTD+, and SRD, demonstrate that our
method can effectively remove shadows and achieve superior performance.
Related papers
- Learning Restoration is Not Enough: Transfering Identical Mapping for
Single-Image Shadow Removal [19.391619888009064]
State-of-the-art shadow removal methods train deep neural networks on collected shadow & shadow-free image pairs.
We find that two tasks exhibit poor compatibility, and using shared weights for these two tasks could lead to the model being optimized towards only one task.
We propose to handle these two tasks separately and leverage the identical mapping results to guide the shadow restoration in an iterative manner.
arXiv Detail & Related papers (2023-05-18T01:36:23Z) - Leveraging Inpainting for Single-Image Shadow Removal [29.679542372017373]
In this work, we find that pretraining shadow removal networks on the image inpainting dataset can reduce the shadow remnants significantly.
A naive encoder-decoder network gets competitive restoration quality w.r.t. the state-of-the-art methods via only 10% shadow & shadow-free image pairs.
Inspired by these observations, we formulate shadow removal as an adaptive fusion task that takes advantage of both shadow removal and image inpainting.
arXiv Detail & Related papers (2023-02-10T16:21:07Z) - Structure-Informed Shadow Removal Networks [67.57092870994029]
Existing deep learning-based shadow removal methods still produce images with shadow remnants.
We propose a novel structure-informed shadow removal network (StructNet) to leverage the image-structure information to address the shadow remnant problem.
Our method outperforms existing shadow removal methods, and our StructNet can be integrated with existing methods to improve them further.
arXiv Detail & Related papers (2023-01-09T06:31:52Z) - ShadowDiffusion: When Degradation Prior Meets Diffusion Model for Shadow
Removal [74.86415440438051]
We propose a unified diffusion framework that integrates both the image and degradation priors for highly effective shadow removal.
Our model achieves a significant improvement in terms of PSNR, increasing from 31.69dB to 34.73dB over SRD dataset.
arXiv Detail & Related papers (2022-12-09T07:48:30Z) - CNSNet: A Cleanness-Navigated-Shadow Network for Shadow Removal [4.951051823391577]
We propose a shadow-oriented adaptive normalization (SOAN) module and a shadow-aware aggregation with transformer (SAAT) module based on the shadow mask.
Under the guidance of the shadow mask, the SOAN module formulates the statistics from the non-shadow region and adaptively applies them to the shadow region for region-wise restoration.
The SAAT module utilizes the shadow mask to precisely guide the restoration of each shadowed pixel by considering the highly relevant pixels from the shadow-free regions for global pixel-wise restoration.
arXiv Detail & Related papers (2022-09-06T01:33:38Z) - LAB-Net: LAB Color-Space Oriented Lightweight Network for Shadow Removal [82.15476792337529]
We present a novel lightweight deep neural network that processes shadow images in the LAB color space.
The proposed network termed "LAB-Net", is motivated by the following three observations.
Experimental results show that our LAB-Net well outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-08-27T15:34:15Z) - R2D: Learning Shadow Removal to Enhance Fine-Context Shadow Detection [64.10636296274168]
Current shadow detection methods perform poorly when detecting shadow regions that are small, unclear or have blurry edges.
We propose a new method called Restore to Detect (R2D), where a deep neural network is trained for restoration (shadow removal)
We show that our proposed method R2D improves the shadow detection performance while being able to detect fine context better compared to the other recent methods.
arXiv Detail & Related papers (2021-09-20T15:09:22Z) - Physics-based Shadow Image Decomposition for Shadow Removal [36.41558227710456]
We propose a novel deep learning method for shadow removal.
Inspired by physical models of shadow formation, we use a linear illumination transformation to model the shadow effects in the image.
We train and test our framework on the most challenging shadow removal dataset.
arXiv Detail & Related papers (2020-12-23T23:06:38Z) - Self-Supervised Shadow Removal [130.6657167667636]
We propose an unsupervised single image shadow removal solution via self-supervised learning by using a conditioned mask.
In contrast to existing literature, we do not require paired shadowed and shadow-free images, instead we rely on self-supervision and jointly learn deep models to remove and add shadows to images.
arXiv Detail & Related papers (2020-10-22T11:33:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.