Physics-based Shadow Image Decomposition for Shadow Removal
- URL: http://arxiv.org/abs/2012.13018v1
- Date: Wed, 23 Dec 2020 23:06:38 GMT
- Title: Physics-based Shadow Image Decomposition for Shadow Removal
- Authors: Hieu Le and Dimitris Samaras
- Abstract summary: We propose a novel deep learning method for shadow removal.
Inspired by physical models of shadow formation, we use a linear illumination transformation to model the shadow effects in the image.
We train and test our framework on the most challenging shadow removal dataset.
- Score: 36.41558227710456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel deep learning method for shadow removal. Inspired by
physical models of shadow formation, we use a linear illumination
transformation to model the shadow effects in the image that allows the shadow
image to be expressed as a combination of the shadow-free image, the shadow
parameters, and a matte layer. We use two deep networks, namely SP-Net and
M-Net, to predict the shadow parameters and the shadow matte respectively. This
system allows us to remove the shadow effects from images. We then employ an
inpainting network, I-Net, to further refine the results. We train and test our
framework on the most challenging shadow removal dataset (ISTD). Our method
improves the state-of-the-art in terms of root mean square error (RMSE) for the
shadow area by 20\%. Furthermore, this decomposition allows us to formulate a
patch-based weakly-supervised shadow removal method. This model can be trained
without any shadow-free images (that are cumbersome to acquire) and achieves
competitive shadow removal results compared to state-of-the-art methods that
are trained with fully paired shadow and shadow-free images. Last, we introduce
SBU-Timelapse, a video shadow removal dataset for evaluating shadow removal
methods.
Related papers
- Shadow Removal Refinement via Material-Consistent Shadow Edges [33.8383848078524]
On both sides of shadow edges traversing regions with the same material, the original color and textures should be the same if the shadow is removed properly.
We fine-tune SAM, an image segmentation foundation model, to produce a shadow-invariant segmentation and then extract material-consistent shadow edges.
We demonstrate the effectiveness of our method in improving shadow removal results on more challenging, in-the-wild images.
arXiv Detail & Related papers (2024-09-10T20:16:28Z) - Progressive Recurrent Network for Shadow Removal [99.1928825224358]
Single-image shadow removal is a significant task that is still unresolved.
Most existing deep learning-based approaches attempt to remove the shadow directly, which can not deal with the shadow well.
We propose a simple but effective Progressive Recurrent Network (PRNet) to remove the shadow progressively.
arXiv Detail & Related papers (2023-11-01T11:42:45Z) - Structure-Informed Shadow Removal Networks [67.57092870994029]
Existing deep learning-based shadow removal methods still produce images with shadow remnants.
We propose a novel structure-informed shadow removal network (StructNet) to leverage the image-structure information to address the shadow remnant problem.
Our method outperforms existing shadow removal methods, and our StructNet can be integrated with existing methods to improve them further.
arXiv Detail & Related papers (2023-01-09T06:31:52Z) - DeS3: Adaptive Attention-driven Self and Soft Shadow Removal using ViT Similarity [54.831083157152136]
We present a method that removes hard, soft and self shadows based on adaptive attention and ViT similarity.
Our method outperforms state-of-the-art methods on the SRD, AISTD, LRSS, USR and UIUC datasets.
arXiv Detail & Related papers (2022-11-15T12:15:29Z) - R2D: Learning Shadow Removal to Enhance Fine-Context Shadow Detection [64.10636296274168]
Current shadow detection methods perform poorly when detecting shadow regions that are small, unclear or have blurry edges.
We propose a new method called Restore to Detect (R2D), where a deep neural network is trained for restoration (shadow removal)
We show that our proposed method R2D improves the shadow detection performance while being able to detect fine context better compared to the other recent methods.
arXiv Detail & Related papers (2021-09-20T15:09:22Z) - Unsupervised Portrait Shadow Removal via Generative Priors [37.46753287881341]
We propose the first unsupervised method for portrait shadow removal without any training data.
Our key idea is to leverage the generative facial priors embedded in the off-the-shelf pretrained StyleGAN2.
Our approach can also be extended to portrait tattoo removal and watermark removal.
arXiv Detail & Related papers (2021-08-07T15:09:36Z) - From Shadow Generation to Shadow Removal [19.486543304598264]
We propose a new G2R-ShadowNet which leverages shadow generation for weakly-supervised shadow removal.
The proposed G2R-ShadowNet consists of three sub-networks for shadow generation, shadow removal and refinement.
In particular, the shadow generation sub-net stylises non-shadow regions to be shadow ones, leading to paired data for training the shadow-removal sub-net.
arXiv Detail & Related papers (2021-03-24T05:49:08Z) - Learning from Synthetic Shadows for Shadow Detection and Removal [43.53464469097872]
Recent shadow removal approaches all train convolutional neural networks (CNN) on real paired shadow/shadow-free or shadow/shadow-free/mask image datasets.
We present SynShadow, a novel large-scale synthetic shadow/shadow-free/matte image triplets dataset and a pipeline to synthesize it.
arXiv Detail & Related papers (2021-01-05T18:56:34Z) - Self-Supervised Shadow Removal [130.6657167667636]
We propose an unsupervised single image shadow removal solution via self-supervised learning by using a conditioned mask.
In contrast to existing literature, we do not require paired shadowed and shadow-free images, instead we rely on self-supervision and jointly learn deep models to remove and add shadows to images.
arXiv Detail & Related papers (2020-10-22T11:33:41Z) - From Shadow Segmentation to Shadow Removal [34.762493656937366]
The requirement for paired shadow and shadow-free images limits the size and diversity of shadow removal datasets.
We propose a shadow removal method that can be trained using only shadow and non-shadow patches cropped from the shadow images themselves.
arXiv Detail & Related papers (2020-08-01T14:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.