REBAR: Retrieval-Based Reconstruction for Time-series Contrastive Learning
- URL: http://arxiv.org/abs/2311.00519v4
- Date: Fri, 25 Oct 2024 20:56:20 GMT
- Title: REBAR: Retrieval-Based Reconstruction for Time-series Contrastive Learning
- Authors: Maxwell A. Xu, Alexander Moreno, Hui Wei, Benjamin M. Marlin, James M. Rehg,
- Abstract summary: We propose a novel method of using a learned measure for identifying positive pairs.
Our Retrieval-Based Reconstruction measure measures the similarity between two sequences.
We show that the REBAR error is a predictor of mutual class membership.
- Score: 64.08293076551601
- License:
- Abstract: The success of self-supervised contrastive learning hinges on identifying positive data pairs, such that when they are pushed together in embedding space, the space encodes useful information for subsequent downstream tasks. Constructing positive pairs is non-trivial as the pairing must be similar enough to reflect a shared semantic meaning, but different enough to capture within-class variation. Classical approaches in vision use augmentations to exploit well-established invariances to construct positive pairs, but invariances in the time-series domain are much less obvious. In our work, we propose a novel method of using a learned measure for identifying positive pairs. Our Retrieval-Based Reconstruction (REBAR) measure measures the similarity between two sequences as the reconstruction error that results from reconstructing one sequence with retrieved information from the other. Then, if the two sequences have high REBAR similarity, we label them as a positive pair. Through validation experiments, we show that the REBAR error is a predictor of mutual class membership. Once integrated into a contrastive learning framework, our REBAR method learns an embedding that achieves state-of-the-art performance on downstream tasks across various modalities.
Related papers
- Bidirectional Decoding: Improving Action Chunking via Closed-Loop Resampling [51.38330727868982]
Bidirectional Decoding (BID) is a test-time inference algorithm that bridges action chunking with closed-loop operations.
We show that BID boosts the performance of two state-of-the-art generative policies across seven simulation benchmarks and two real-world tasks.
arXiv Detail & Related papers (2024-08-30T15:39:34Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Synergistic Anchored Contrastive Pre-training for Few-Shot Relation
Extraction [4.7220779071424985]
Few-shot Relation Extraction (FSRE) aims to extract facts from a sparse set of labeled corpora.
Recent studies have shown promising results in FSRE by employing Pre-trained Language Models.
We introduce a novel synergistic anchored contrastive pre-training framework.
arXiv Detail & Related papers (2023-12-19T10:16:24Z) - Identical and Fraternal Twins: Fine-Grained Semantic Contrastive
Learning of Sentence Representations [6.265789210037749]
We introduce a novel Identical and Fraternal Twins of Contrastive Learning framework, capable of simultaneously adapting to various positive pairs generated by different augmentation techniques.
We also present proof-of-concept experiments combined with the contrastive objective to prove the validity of the proposed Twins Loss.
arXiv Detail & Related papers (2023-07-20T15:02:42Z) - Beyond Instance Discrimination: Relation-aware Contrastive
Self-supervised Learning [75.46664770669949]
We present relation-aware contrastive self-supervised learning (ReCo) to integrate instance relations.
Our ReCo consistently gains remarkable performance improvements.
arXiv Detail & Related papers (2022-11-02T03:25:28Z) - Connective Reconstruction-based Novelty Detection [3.7706789983985303]
Deep learning has enabled us to analyze real-world data which contain unexplained samples.
GAN-based approaches have been widely used to address this problem due to their ability to perform distribution fitting.
We propose a simple yet efficient reconstruction-based method that avoids adding complexities to compensate for the limitations of GAN models.
arXiv Detail & Related papers (2022-10-25T11:09:39Z) - Extending Momentum Contrast with Cross Similarity Consistency
Regularization [5.085461418671174]
We present Extended Momentum Contrast, a self-supervised representation learning method founded upon the legacy of the momentum-encoder unit proposed in the MoCo family configurations.
Under the cross consistency regularization rule, we argue that semantic representations associated with any pair of images (positive or negative) should preserve their cross-similarity.
We report a competitive performance on the standard Imagenet-1K linear head classification benchmark.
arXiv Detail & Related papers (2022-06-07T20:06:56Z) - Provable Guarantees for Self-Supervised Deep Learning with Spectral
Contrastive Loss [72.62029620566925]
Recent works in self-supervised learning have advanced the state-of-the-art by relying on the contrastive learning paradigm.
Our work analyzes contrastive learning without assuming conditional independence of positive pairs.
We propose a loss that performs spectral decomposition on the population augmentation graph and can be succinctly written as a contrastive learning objective.
arXiv Detail & Related papers (2021-06-08T07:41:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.