論文の概要: Boosting Summarization with Normalizing Flows and Aggressive Training
- arxiv url: http://arxiv.org/abs/2311.00588v1
- Date: Wed, 1 Nov 2023 15:33:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-02 13:04:17.433343
- Title: Boosting Summarization with Normalizing Flows and Aggressive Training
- Title(参考訳): 正規化流とアグレッシブトレーニングによるブースティング要約
- Authors: Yu Yang, Xiaotong Shen
- Abstract要約: FlowSUMは、Transformerベースの要約のための正規化フローベースの変分エンコーダデコーダフレームワークである。
本手法は,潜伏表現における意味情報の不足と,訓練中の後部崩壊の2つの主要な課題に対処する。
- 参考スコア(独自算出の注目度): 6.6242828769801285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents FlowSUM, a normalizing flows-based variational
encoder-decoder framework for Transformer-based summarization. Our approach
tackles two primary challenges in variational summarization: insufficient
semantic information in latent representations and posterior collapse during
training. To address these challenges, we employ normalizing flows to enable
flexible latent posterior modeling, and we propose a controlled alternate
aggressive training (CAAT) strategy with an improved gate mechanism.
Experimental results show that FlowSUM significantly enhances the quality of
generated summaries and unleashes the potential for knowledge distillation with
minimal impact on inference time. Furthermore, we investigate the issue of
posterior collapse in normalizing flows and analyze how the summary quality is
affected by the training strategy, gate initialization, and the type and number
of normalizing flows used, offering valuable insights for future research.
- Abstract(参考訳): 本稿では,トランスフォーマライズのための流れベースの変分エンコーダ・デコーダフレームワークflowsumを提案する。
本手法は,潜伏表現における意味情報の不足と,訓練中の後部崩壊の2つの主要な課題に対処する。
これらの課題に対処するため,我々は,フレキシブルな潜時後モデリングを実現するために流れの正規化を行い,ゲート機構を改良したcaat戦略を提案する。
実験結果から,FlowSUMは生成したサマリーの品質を著しく向上させ,推論時間に最小限の影響を伴って知識蒸留の可能性を明らかにする。
さらに, 正規化フローにおける後部崩壊の問題について検討し, トレーニング戦略, ゲート初期化, 使用する正規化フローの種類と数による要約品質への影響を分析し, 今後の研究に有用な知見を提供する。
関連論文リスト
- Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis [10.79615566320291]
下流性能の最適化を目標として、トランスファーラーニングについて検討する。
任意の事前学習された特徴を入力として取る単純な線形モデルを導入する。
下流タスクのアンサンブル上で平均される下流リスクを最小化することにより、最適事前学習表現を同定する。
論文 参考訳(メタデータ) (2024-04-18T19:33:55Z) - Rethinking Model Re-Basin and Linear Mode Connectivity [1.1510009152620668]
我々は再正規化を再スケーリングと再シフトに分解し、再スケーリングが再正規化に重要な役割を果たしていることを明らかにする。
統合モデルでは, 活性化崩壊とマグニチュード崩壊の問題に悩まされている。
本稿では,リベースとプルーニングを統一する新たな視点を提案し,軽量で効果的なポストプルーニング手法を導出する。
論文 参考訳(メタデータ) (2024-02-05T17:06:26Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
拡散モデルは、以前の文脈における瞬間的な入出力関係ではなく、一連のタイムステップで操作する。
本稿では、この時間的ダイナミクスを取り入れた拡散トラクInについて、サンプルの損失勾配ノルムが時間ステップに大きく依存していることを確認する。
そこで我々はDiffusion-ReTracを再正規化適応として導入し、興味のあるサンプルを対象にしたトレーニングサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2024-01-17T07:58:18Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
本稿では,学習前のニューラル回帰モデルの最後の層の重みを適応させて,異なる分布から得られる入力データを改善する手法を提案する。
本稿では,この軽量なスペクトル適応手法により,合成および実世界のデータセットの分布外性能が向上することを示す。
論文 参考訳(メタデータ) (2023-12-29T04:15:58Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
その結果,ガイドフローは条件付き画像生成やゼロショット音声合成におけるサンプル品質を著しく向上させることがわかった。
特に、我々は、拡散モデルと比較して、オフライン強化学習設定axスピードアップにおいて、まず、計画生成にフローモデルを適用する。
論文 参考訳(メタデータ) (2023-11-22T15:07:59Z) - Free-form Flows: Make Any Architecture a Normalizing Flow [8.163244519983298]
本研究では,変数の変動の勾配を効率的に推定する訓練手法を開発した。
これにより、任意の次元保存ニューラルネットワークが、最大限のトレーニングを通じて生成モデルとして機能することが可能になる。
我々は$E(n)$-equivariantネットワークを用いた分子生成ベンチマークにおいて優れた結果を得た。
論文 参考訳(メタデータ) (2023-10-25T13:23:08Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) はサンプルベースのフレームワークであり、学習プロセスを短い部分的軌道セグメントに分解することができる。
生成フローネットワーク(GFlowNets)のための理論から着想を得た。
論文 参考訳(メタデータ) (2023-10-04T09:39:05Z) - Data Augmentation through Expert-guided Symmetry Detection to Improve
Performance in Offline Reinforcement Learning [0.0]
マルコフ決定過程(MDP)の動的モデルのオフライン推定は非自明な作業である。
近年の研究では、密度推定法に依存する専門家誘導パイプラインが、決定論的環境において、この構造を効果的に検出できることが示されている。
学習したMDPを解き、実際の環境に最適化されたポリシーを適用すると、前者の結果が性能改善につながることを示す。
論文 参考訳(メタデータ) (2021-12-18T14:32:32Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。