Adaptive Spatio-temporal Estimation on the Graph Edges via Line Graph Transformation
- URL: http://arxiv.org/abs/2311.00656v3
- Date: Wed, 23 Oct 2024 06:53:57 GMT
- Title: Adaptive Spatio-temporal Estimation on the Graph Edges via Line Graph Transformation
- Authors: Yi Yan, Ercan Engin Kuruoglu,
- Abstract summary: Leveraging the Line Graph transform, the Line Graph Least Mean Square (LGLMS) algorithm is proposed to conduct adaptive estimation of time-varying edge signals.
LGLMS is an adaptive algorithm analogous to the classical LMS algorithm but applied to graph edges.
- Score: 3.6448362316632115
- License:
- Abstract: Spatio-temporal estimation of signals on graph edges is challenging because most conventional Graph Signal Processing techniques are defined on the graph nodes. Leveraging the Line Graph transform, the Line Graph Least Mean Square (LGLMS) algorithm is proposed to conduct adaptive estimation of time-varying edge signals by projecting the edge signals from edge space to node space. LGLMS is an adaptive algorithm analogous to the classical LMS algorithm but applied to graph edges. Unlike edge-specific methods, LGLMS retains all GSP concepts and techniques originally designed for graph nodes, without the need for redefinition on the edges. Experimenting with transportation graphs and meteorological graphs, with the signal observations having noisy and missing values, we confirmed that LGLMS is suitable for the online prediction of time-varying edge signals.
Related papers
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
Noise perturbations often corrupt 3-D point clouds, hindering downstream tasks such as surface reconstruction, rendering, and further processing.
This paper introduces finegranularity dynamic graph convolutional networks called GDGCN, a novel approach to denoising in 3-D point clouds.
arXiv Detail & Related papers (2024-11-21T14:19:32Z) - Improving Graph Neural Networks by Learning Continuous Edge Directions [0.0]
Graph Neural Networks (GNNs) traditionally employ a message-passing mechanism that resembles diffusion over undirected graphs.
Our key insight is to assign fuzzy edge directions to the edges of a graph so that features can preferentially flow in one direction between nodes.
We propose a general framework, called Continuous Edge Direction (CoED) GNN, for learning on graphs with fuzzy edges.
arXiv Detail & Related papers (2024-10-18T01:34:35Z) - Online Proximal ADMM for Graph Learning from Streaming Smooth Signals [9.34612743192798]
We develop a novel algorithm for online graph learning using observation streams, assumed to be smooth on the latent graph.
Our modus operandi is to process graph signals sequentially and thus keep memory and computational costs in check.
The proposed approach also exhibits better tracking performance (in terms of suboptimality) when compared to state-of-the-art online graph learning baselines.
arXiv Detail & Related papers (2024-09-19T17:12:03Z) - ADEdgeDrop: Adversarial Edge Dropping for Robust Graph Neural Networks [53.41164429486268]
Graph Neural Networks (GNNs) have exhibited the powerful ability to gather graph-structured information from neighborhood nodes.
The performance of GNNs is limited by poor generalization and fragile robustness caused by noisy and redundant graph data.
We propose a novel adversarial edge-dropping method (ADEdgeDrop) that leverages an adversarial edge predictor guiding the removal of edges.
arXiv Detail & Related papers (2024-03-14T08:31:39Z) - Graph Normalized-LMP Algorithm for Signal Estimation Under Impulsive
Noise [1.1279808969568252]
We introduce an adaptive graph normalized least mean pth power (GNLMP) algorithm for graph signal processing (GSP)
The GNLMP algorithm has the ability to reconstruct a graph signal corrupted by non-Gaussian noise with heavy-tailed characteristics.
Simulations show the performance of the GNLMP algorithm in estimating steady-state and time-varying graph signals is faster than GLMP and more robust in comparison to GLMS and GNLMS.
arXiv Detail & Related papers (2022-03-01T09:50:43Z) - Pointspectrum: Equivariance Meets Laplacian Filtering for Graph
Representation Learning [3.7875603451557063]
Graph Representation Learning (GRL) has become essential for modern graph data mining and learning tasks.
While Graph Neural Networks (GNNs) have been used in state-of-the-art GRL architectures, they have been shown to suffer from over smoothing.
We propose PointSpectrum, a spectral method that incorporates a set equivariant network to account for a graph's structure.
arXiv Detail & Related papers (2021-09-06T10:59:11Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - Training Robust Graph Neural Networks with Topology Adaptive Edge
Dropping [116.26579152942162]
Graph neural networks (GNNs) are processing architectures that exploit graph structural information to model representations from network data.
Despite their success, GNNs suffer from sub-optimal generalization performance given limited training data.
This paper proposes Topology Adaptive Edge Dropping to improve generalization performance and learn robust GNN models.
arXiv Detail & Related papers (2021-06-05T13:20:36Z) - Offline detection of change-points in the mean for stationary graph
signals [55.98760097296213]
We propose an offline method that relies on the concept of graph signal stationarity.
Our detector comes with a proof of a non-asymptotic inequality oracle.
arXiv Detail & Related papers (2020-06-18T15:51:38Z) - Graphon Pooling in Graph Neural Networks [169.09536309161314]
Graph neural networks (GNNs) have been used effectively in different applications involving the processing of signals on irregular structures modeled by graphs.
We propose a new strategy for pooling and sampling on GNNs using graphons which preserves the spectral properties of the graph.
arXiv Detail & Related papers (2020-03-03T21:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.