Investigating Relative Performance of Transfer and Meta Learning
- URL: http://arxiv.org/abs/2311.00727v1
- Date: Tue, 31 Oct 2023 12:52:00 GMT
- Title: Investigating Relative Performance of Transfer and Meta Learning
- Authors: Benji Alwis
- Abstract summary: This paper presents the outcomes of an investigation designed to compare two distinct approaches, transfer learning and meta learning.
The overarching objective was to establish a robust criterion for selecting the most suitable method in diverse machine learning scenarios.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the past decade, the field of machine learning has experienced
remarkable advancements. While image recognition systems have achieved
impressive levels of accuracy, they continue to rely on extensive training
datasets. Additionally, a significant challenge has emerged in the form of poor
out-of-distribution performance, which necessitates retraining neural networks
when they encounter conditions that deviate from their training data. This
limitation has notably contributed to the slow progress in self-driving car
technology. These pressing issues have sparked considerable interest in methods
that enable neural networks to learn effectively from limited data. This paper
presents the outcomes of an extensive investigation designed to compare two
distinct approaches, transfer learning and meta learning, as potential
solutions to this problem. The overarching objective was to establish a robust
criterion for selecting the most suitable method in diverse machine learning
scenarios. Building upon prior research, I expanded the comparative analysis by
introducing a new meta learning method into the investigation. Subsequently, I
assessed whether the findings remained consistent under varying conditions.
Finally, I delved into the impact of altering the size of the training dataset
on the relative performance of these methods. This comprehensive exploration
has yielded insights into the conditions favoring each approach, thereby
facilitating the development of a criterion for selecting the most appropriate
method in any given situation
Related papers
- Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
We discuss the recent advances in deep learning-based object pose estimation.
Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks.
arXiv Detail & Related papers (2024-05-13T14:44:22Z) - When Meta-Learning Meets Online and Continual Learning: A Survey [39.53836535326121]
meta-learning is a data-driven approach to optimize the learning algorithm.
Continual learning and online learning, both of which involve incrementally updating a model with streaming data.
This paper organizes various problem settings using consistent terminology and formal descriptions.
arXiv Detail & Related papers (2023-11-09T09:49:50Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
In this paper, we employ a Reinforcement Learning framework to simulate the cognitive processes of humans.
We also deploy a Member-to-Leader Multi-Agent framework to extract and fuse features from multi-modal information.
We demonstrate the performance of our approach in both the 3D and 2D domains by employing the OS-MN40, OS-MN40-Miss, and Cifar10 datasets.
arXiv Detail & Related papers (2023-08-26T07:55:32Z) - Automated Deception Detection from Videos: Using End-to-End Learning
Based High-Level Features and Classification Approaches [0.0]
We propose a multimodal approach combining deep learning and discriminative models for deception detection.
We employ convolutional end-to-end learning to analyze gaze, head pose, and facial expressions.
Our approach is evaluated on five datasets, including a new Rolling-Dice Experiment motivated by economic factors.
arXiv Detail & Related papers (2023-07-13T08:45:15Z) - Concept Discovery for Fast Adapatation [42.81705659613234]
We introduce concept discovery to the few-shot learning problem, where we achieve more effective adaptation by meta-learning the structure among the data features.
Our proposed method Concept-Based Model-Agnostic Meta-Learning (COMAML) has been shown to achieve consistent improvements in the structured data for both synthesized datasets and real-world datasets.
arXiv Detail & Related papers (2023-01-19T02:33:58Z) - Towards Robust Dataset Learning [90.2590325441068]
We propose a principled, tri-level optimization to formulate the robust dataset learning problem.
Under an abstraction model that characterizes robust vs. non-robust features, the proposed method provably learns a robust dataset.
arXiv Detail & Related papers (2022-11-19T17:06:10Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
We introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks.
Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth.
Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks.
arXiv Detail & Related papers (2022-11-15T18:57:46Z) - Friendly Training: Neural Networks Can Adapt Data To Make Learning
Easier [23.886422706697882]
We propose a novel training procedure named Friendly Training.
We show that Friendly Training yields improvements with respect to informed data sub-selection and random selection.
Results suggest that adapting the input data is a feasible way to stabilize learning and improve the skills generalization of the network.
arXiv Detail & Related papers (2021-06-21T10:50:34Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
We analyze four broad meta-learning strategies which rely on plug-in estimation and pseudo-outcome regression.
We highlight how this theoretical reasoning can be used to guide principled algorithm design and translate our analyses into practice.
arXiv Detail & Related papers (2021-01-26T17:11:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.