論文の概要: Optimal Cost Constrained Adversarial Attacks For Multiple Agent Systems
- arxiv url: http://arxiv.org/abs/2311.00859v1
- Date: Wed, 1 Nov 2023 21:28:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 15:44:02.651974
- Title: Optimal Cost Constrained Adversarial Attacks For Multiple Agent Systems
- Title(参考訳): 複数のエージェントシステムに対する最適コスト制約型対向攻撃
- Authors: Ziqing Lu, Guanlin Liu, Lifeng Cai, Weiyu Xu
- Abstract要約: 分散攻撃エージェントを用いた最適な敵エージェント対エージェント攻撃を行うという問題を定式化する。
そこで本稿では,静的制約付き攻撃-リソース割り当て最適化と動的プログラミングの段階間最適化を組み合わせた最適手法を提案する。
以上の結果から,攻撃エージェントが受ける報酬を大幅に削減できる可能性が示唆された。
- 参考スコア(独自算出の注目度): 6.69087470775851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Finding optimal adversarial attack strategies is an important topic in
reinforcement learning and the Markov decision process. Previous studies
usually assume one all-knowing coordinator (attacker) for whom attacking
different recipient (victim) agents incurs uniform costs. However, in reality,
instead of using one limitless central attacker, the attacks often need to be
performed by distributed attack agents. We formulate the problem of performing
optimal adversarial agent-to-agent attacks using distributed attack agents, in
which we impose distinct cost constraints on each different attacker-victim
pair. We propose an optimal method integrating within-step static constrained
attack-resource allocation optimization and between-step dynamic programming to
achieve the optimal adversarial attack in a multi-agent system. Our numerical
results show that the proposed attacks can significantly reduce the rewards
received by the attacked agents.
- Abstract(参考訳): 最適な攻撃戦略を見つけることは強化学習とマルコフ決定プロセスにおいて重要なトピックである。
以前の研究では、異なる受信者(被害者)エージェントを攻撃した1人の全知のコーディネーター(攻撃者)が均一なコストを発生させると仮定していた。
しかし実際には、1つの制限のない中央攻撃者ではなく、分散攻撃エージェントによって攻撃を行う必要がある。
我々は,分散攻撃エージェントを用いた攻撃エージェント対エージェント攻撃を最適に行う問題を定式化し,攻撃と勝利のペアごとに異なるコスト制約を課す。
マルチエージェントシステムにおける最適対向攻撃を実現するために,静的な制約付き攻撃-リソース割り当て最適化と動的プログラムのステップ間を最適化する最適手法を提案する。
その結果,提案する攻撃は,攻撃したエージェントが受ける報酬を大幅に削減できることがわかった。
関連論文リスト
- Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - Multi-granular Adversarial Attacks against Black-box Neural Ranking Models [111.58315434849047]
多粒性摂動を取り入れた高品質な逆数例を作成する。
我々は,多粒体攻撃を逐次的意思決定プロセスに変換する。
本手法は,攻撃の有効性と非受容性の両方において,一般的なベースラインを超えている。
論文 参考訳(メタデータ) (2024-04-02T02:08:29Z) - Securing Recommender System via Cooperative Training [78.97620275467733]
本稿では,データを相互に強化する3つの協調モデルを用いたTCD(Triple Cooperative Defense)を提案する。
既存の攻撃が二段階最適化と効率のバランスをとるのに苦労していることを考えると、リコメンダシステムにおける毒殺攻撃を再考する。
我々はゲームベースのコトレーニングアタック(GCoAttack)を提案し,提案したCoAttackとTCDをゲーム理論のプロセスとする。
論文 参考訳(メタデータ) (2024-01-23T12:07:20Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - Adversarial Attacks on Cooperative Multi-agent Bandits [41.79235070291252]
本研究は,CMA2Bに対する不均質および不均質な環境下での敵攻撃について検討する。
均質な設定では、各エージェントが特定のターゲットアームを$T-o(T)$倍選択し、$o(T)$攻撃コストを$T$ラウンドで発生させる攻撃戦略を提案する。
不均質な環境では、標的アーム攻撃が線形攻撃コストを必要とすることを証明し、少数の標的エージェントの観測のみを操作しながら、最大数のエージェントに線形後悔を強いる攻撃戦略を提案する。
論文 参考訳(メタデータ) (2023-11-03T04:03:19Z) - Efficient Adversarial Attacks on Online Multi-agent Reinforcement
Learning [45.408568528354216]
対人攻撃がマルチエージェント強化学習(MARL)に及ぼす影響について検討する。
検討された設定では、エージェントがそれらを受け取る前に報酬を変更したり、環境がそれを受け取る前にアクションを操作することができる攻撃者がいる。
この混合攻撃戦略は,攻撃者が基礎となる環境やエージェントのアルゴリズムに関する事前情報を持っていなくても,MARLエージェントを効果的に攻撃することができることを示す。
論文 参考訳(メタデータ) (2023-07-15T00:38:55Z) - Implicit Poisoning Attacks in Two-Agent Reinforcement Learning:
Adversarial Policies for Training-Time Attacks [21.97069271045167]
標的毒攻撃では、攻撃者はエージェントと環境の相互作用を操作して、ターゲットポリシーと呼ばれる利害政策を採用するように強制する。
本研究では,攻撃者がエージェントの有効環境を暗黙的に毒殺する2エージェント環境での標的毒殺攻撃について,仲間の方針を変更して検討した。
最適な攻撃を設計するための最適化フレームワークを開発し、攻撃のコストは、ピアエージェントが想定するデフォルトポリシーからどの程度逸脱するかを測定する。
論文 参考訳(メタデータ) (2023-02-27T14:52:15Z) - Adversarial Attacks on Adversarial Bandits [10.891819703383408]
攻撃者は,任意の非相対的帯域幅アルゴリズムをミスリードして,準最適目標アームを選択することができることを示す。
この結果は、現実世界の盗賊ベースのシステムにおける重要なセキュリティ上の懸念を意味する。
論文 参考訳(メタデータ) (2023-01-30T00:51:39Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
我々は、攻撃最適化中に局所最小限を避けるための誘導機構を開発し、G-PGAと呼ばれる新たな攻撃に繋がる。
修正された攻撃では、ランダムに再起動したり、多数の攻撃を繰り返したり、最適なステップサイズを検索したりする必要がありません。
効果的な攻撃以上に、G-PGAは敵防御における勾配マスキングによる解離性堅牢性を明らかにするための診断ツールとして用いられる。
論文 参考訳(メタデータ) (2022-12-30T18:45:23Z) - Composite Adversarial Attacks [57.293211764569996]
敵対攻撃は、機械学習(ML)モデルを欺くための技術です。
本論文では,攻撃アルゴリズムの最適組み合わせを自動的に探索するための複合攻撃法(Composite Adrial Attack,CAA)を提案する。
CAAは11の防衛でトップ10の攻撃を破り、時間の経過は少ない。
論文 参考訳(メタデータ) (2020-12-10T03:21:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。