Seneca: Taint-Based Call Graph Construction for Java Object Deserialization
- URL: http://arxiv.org/abs/2311.00943v2
- Date: Mon, 2 Sep 2024 13:19:28 GMT
- Title: Seneca: Taint-Based Call Graph Construction for Java Object Deserialization
- Authors: Joanna C. S. Santos, Mehdi Mirakhorli, Ali Shokri,
- Abstract summary: We present Seneca, an approach for handling serialization with improved soundness in the context of call graph construction.
We evaluate our approach with respect to soundness, precision, performance, and usefulness in detecting untrusted object deserialization vulnerabilities.
- Score: 3.6731536660959985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object serialization and deserialization are widely used for storing and preserving objects in files, memory, or database as well as for transporting them across machines, enabling remote interaction among processes and many more. This mechanism relies on reflection, a dynamic language that introduces serious challenges for static analyses. Current state-of-the-art call graph construction algorithms do not fully support object serialization/deserialization, i.e., they are unable to uncover the callback methods that are invoked when objects are serialized and deserialized. Since call graphs are a core data structure for multiple types of analysis (e.g., vulnerability detection), an appropriate analysis cannot be performed since the call graph does not capture hidden (vulnerable) paths that occur via callback methods. In this paper, we present Seneca, an approach for handling serialization with improved soundness in the context of call graph construction. Our approach relies on taint analysis and API modeling to construct sound call graphs. We evaluated our approach with respect to soundness, precision, performance, and usefulness in detecting untrusted object deserialization vulnerabilities. Our results show that Seneca can create sound call graphs with respect to serialization features. The resulting call graphs do not incur significant runtime overhead and were shown to be useful for performing identification of vulnerable paths caused by untrusted object deserialization.
Related papers
- GOReloc: Graph-based Object-Level Relocalization for Visual SLAM [17.608119427712236]
This article introduces a novel method for object-level relocalization of robotic systems.
It determines the pose of a camera sensor by robustly associating the object detections in the current frame with 3D objects in a lightweight object-level map.
arXiv Detail & Related papers (2024-08-15T03:54:33Z) - Multi-Scene Generalized Trajectory Global Graph Solver with Composite
Nodes for Multiple Object Tracking [61.69892497726235]
Composite Node Message Passing Network (CoNo-Link) is a framework for modeling ultra-long frames information for association.
In addition to the previous method of treating objects as nodes, the network innovatively treats object trajectories as nodes for information interaction.
Our model can learn better predictions on longer-time scales by adding composite nodes.
arXiv Detail & Related papers (2023-12-14T14:00:30Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
We consider the task of conversational semantic parsing over general purpose knowledge graphs (KGs) with millions of entities, and thousands of relation-types.
We focus on models which are capable of interactively mapping user utterances into executable logical forms.
arXiv Detail & Related papers (2023-05-04T16:04:41Z) - Robust Object Detection in Remote Sensing Imagery with Noisy and Sparse
Geo-Annotations (Full Version) [4.493174773769076]
In this paper, we present a novel approach for training object detectors with extremely noisy and incomplete annotations.
Our method is based on a teacher-student learning framework and a correction module accounting for imprecise and missing annotations.
We demonstrate that our approach improves standard detectors by 37.1% $AP_50$ on a noisy real-world remote-sensing dataset.
arXiv Detail & Related papers (2022-10-24T07:25:31Z) - AutoPruner: Transformer-Based Call Graph Pruning [7.319973664340497]
We present a novel call graph pruning technique, AutoPruner, for eliminating false positives in call graphs via both statistical semantic and structural analysis.
Our empirical evaluation on a benchmark dataset of real-world programs shows that AutoPruner outperforms the state-of-the-art baselines.
arXiv Detail & Related papers (2022-09-07T15:35:28Z) - Sequence Feature Extraction for Malware Family Analysis via Graph Neural
Network [0.0]
We design and implement an Attention Aware Graph Neural Network (AWGCN) to analyze the API call sequences.
Through AWGCN, we can obtain the sequence embeddings to analyze the behavior of the malware.
arXiv Detail & Related papers (2022-08-10T07:31:44Z) - RICE: Refining Instance Masks in Cluttered Environments with Graph
Neural Networks [53.15260967235835]
We propose a novel framework that refines the output of such methods by utilizing a graph-based representation of instance masks.
We train deep networks capable of sampling smart perturbations to the segmentations, and a graph neural network, which can encode relations between objects, to evaluate the segmentations.
We demonstrate an application that uses uncertainty estimates generated by our method to guide a manipulator, leading to efficient understanding of cluttered scenes.
arXiv Detail & Related papers (2021-06-29T20:29:29Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z) - Data Augmentation for Object Detection via Differentiable Neural
Rendering [71.00447761415388]
It is challenging to train a robust object detector when annotated data is scarce.
Existing approaches to tackle this problem include semi-supervised learning that interpolates labeled data from unlabeled data.
We introduce an offline data augmentation method for object detection, which semantically interpolates the training data with novel views.
arXiv Detail & Related papers (2021-03-04T06:31:06Z) - Weakly-Supervised Salient Object Detection via Scribble Annotations [54.40518383782725]
We propose a weakly-supervised salient object detection model to learn saliency from scribble labels.
We present a new metric, termed saliency structure measure, to measure the structure alignment of the predicted saliency maps.
Our method not only outperforms existing weakly-supervised/unsupervised methods, but also is on par with several fully-supervised state-of-the-art models.
arXiv Detail & Related papers (2020-03-17T12:59:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.