RICE: Refining Instance Masks in Cluttered Environments with Graph
Neural Networks
- URL: http://arxiv.org/abs/2106.15711v1
- Date: Tue, 29 Jun 2021 20:29:29 GMT
- Title: RICE: Refining Instance Masks in Cluttered Environments with Graph
Neural Networks
- Authors: Christopher Xie, Arsalan Mousavian, Yu Xiang, Dieter Fox
- Abstract summary: We propose a novel framework that refines the output of such methods by utilizing a graph-based representation of instance masks.
We train deep networks capable of sampling smart perturbations to the segmentations, and a graph neural network, which can encode relations between objects, to evaluate the segmentations.
We demonstrate an application that uses uncertainty estimates generated by our method to guide a manipulator, leading to efficient understanding of cluttered scenes.
- Score: 53.15260967235835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmenting unseen object instances in cluttered environments is an important
capability that robots need when functioning in unstructured environments.
While previous methods have exhibited promising results, they still tend to
provide incorrect results in highly cluttered scenes. We postulate that a
network architecture that encodes relations between objects at a high-level can
be beneficial. Thus, in this work, we propose a novel framework that refines
the output of such methods by utilizing a graph-based representation of
instance masks. We train deep networks capable of sampling smart perturbations
to the segmentations, and a graph neural network, which can encode relations
between objects, to evaluate the perturbed segmentations. Our proposed method
is orthogonal to previous works and achieves state-of-the-art performance when
combined with them. We demonstrate an application that uses uncertainty
estimates generated by our method to guide a manipulator, leading to efficient
understanding of cluttered scenes. Code, models, and video can be found at
https://github.com/chrisdxie/rice .
Related papers
- Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection [57.883265488038134]
We propose a hierarchical graph interaction network termed HGINet for camouflaged object detection.
The network is capable of discovering imperceptible objects via effective graph interaction among the hierarchical tokenized features.
Our experiments demonstrate the superior performance of HGINet compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2024-08-27T12:53:25Z) - LAC-Net: Linear-Fusion Attention-Guided Convolutional Network for Accurate Robotic Grasping Under the Occlusion [79.22197702626542]
This paper introduces a framework that explores amodal segmentation for robotic grasping in cluttered scenes.
We propose a Linear-fusion Attention-guided Convolutional Network (LAC-Net)
The results on different datasets show that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-08-06T14:50:48Z) - ICGNet: A Unified Approach for Instance-Centric Grasping [42.92991092305974]
We introduce an end-to-end architecture for object-centric grasping.
We show the effectiveness of the proposed method by extensively evaluating it against state-of-the-art methods on synthetic datasets.
arXiv Detail & Related papers (2024-01-18T12:41:41Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
We propose a novel framework called Squeeze Reasoning.
Instead of propagating information on the spatial map, we first learn to squeeze the input feature into a channel-wise global vector.
We show that our approach can be modularized as an end-to-end trained block and can be easily plugged into existing networks.
arXiv Detail & Related papers (2020-11-06T12:17:01Z) - Instance Segmentation of Visible and Occluded Regions for Finding and
Picking Target from a Pile of Objects [25.836334764387498]
We present a robotic system for picking a target from a pile of objects that is capable of finding and grasping the target object.
We extend an existing instance segmentation model with a novel relook' architecture, in which the model explicitly learns the inter-instance relationship.
Also, by using image synthesis, we make the system capable of handling new objects without human annotations.
arXiv Detail & Related papers (2020-01-21T12:28:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.