論文の概要: Generative Input: Towards Next-Generation Input Methods Paradigm
- arxiv url: http://arxiv.org/abs/2311.01166v1
- Date: Thu, 2 Nov 2023 12:01:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 13:48:38.133323
- Title: Generative Input: Towards Next-Generation Input Methods Paradigm
- Title(参考訳): ジェネレーティブ・インプット:次世代インプット・メソッド・パラダイムに向けて
- Authors: Keyu Ding and Yongcan Wang and Zihang Xu and Zhenzhen Jia and Shijin
Wang and Cong Liu and Enhong Chen
- Abstract要約: 我々はGeneInputという新しい生成入力パラダイムを提案する。
すべての入力シナリオと他のインテリジェントな補助入力関数を処理するためにプロンプトを使用し、ユーザーフィードバックでモデルを最適化し、パーソナライズされた結果を提供する。
その結果,FK2C(Full-mode Key-sequence to Characters)タスクにおいて,最先端のパフォーマンスを初めて達成したことを示す。
- 参考スコア(独自算出の注目度): 49.98958865125018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since the release of ChatGPT, generative models have achieved tremendous
success and become the de facto approach for various NLP tasks. However, its
application in the field of input methods remains under-explored. Many neural
network approaches have been applied to the construction of Chinese input
method engines(IMEs).Previous research often assumed that the input pinyin was
correct and focused on Pinyin-to-character(P2C) task, which significantly falls
short of meeting users' demands. Moreover, previous research could not leverage
user feedback to optimize the model and provide personalized results. In this
study, we propose a novel Generative Input paradigm named GeneInput. It uses
prompts to handle all input scenarios and other intelligent auxiliary input
functions, optimizing the model with user feedback to deliver personalized
results. The results demonstrate that we have achieved state-of-the-art
performance for the first time in the Full-mode Key-sequence to
Characters(FK2C) task. We propose a novel reward model training method that
eliminates the need for additional manual annotations and the performance
surpasses GPT-4 in tasks involving intelligent association and conversational
assistance. Compared to traditional paradigms, GeneInput not only demonstrates
superior performance but also exhibits enhanced robustness, scalability, and
online learning capabilities.
- Abstract(参考訳): ChatGPTのリリース以来、生成モデルは大きな成功を収め、様々なNLPタスクのデファクトアプローチとなっている。
しかし、入力メソッドの分野におけるその応用は未検討のままである。
多くのニューラルネットワークアプローチが中国の入力方法エンジン(IME)の構築に応用されている。
以前の研究では、入力ピンインが正しいと仮定され、Pinyin-to-character(P2C)タスクに集中していた。
さらに、過去の研究では、モデルの最適化とパーソナライズされた結果の提供にユーザーからのフィードバックを活用できなかった。
本研究では,GeneInput という新しい生成入力パラダイムを提案する。
プロンプトを使用して、すべての入力シナリオやその他のインテリジェントな補助入力関数を処理し、モデルの最適化とユーザフィードバックによるパーソナライズされた結果の提供を行う。
その結果,FK2C(Full-mode Key-sequence to Characters)タスクにおいて,初めて最先端のパフォーマンスを達成した。
本稿では,知的な連携と会話支援を伴うタスクにおいて,追加の手動アノテーションの必要性をなくし,gpt-4を上回るパフォーマンスを実現する,新たな報酬モデルトレーニング手法を提案する。
従来のパラダイムと比較して、GeneInputは優れたパフォーマンスを示すだけでなく、堅牢性、スケーラビリティ、オンライン学習能力も向上している。
関連論文リスト
- MetaKP: On-Demand Keyphrase Generation [52.48698290354449]
オンデマンドのキーフレーズ生成は,特定のハイレベルな目標や意図に従うキーフレーズを必要とする新しいパラダイムである。
そこで我々は,4つのデータセット,7500のドキュメント,3760の目標からなる大規模ベンチマークであるMetaKPを紹介した。
ソーシャルメディアからの流行事象検出に応用して,一般のNLP基盤として機能する可能性を示す。
論文 参考訳(メタデータ) (2024-06-28T19:02:59Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
記述的なテキストクエリーを与えられたテキストベースの人物検索は、画像ギャラリーからベストマッチした人物を検索することを目的としている。
このようなクロスモーダル検索タスクは、重要なモダリティギャップ、きめ細かい相違、注釈付きデータの不十分さのため、かなり難しい。
本稿では,テキストに基づく人物検索のための2つのトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2023-11-15T16:26:49Z) - Automating Human Tutor-Style Programming Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model for Hint Validation [25.317788211120362]
本稿では,人間の教師型プログラミングヒントの提供における生成型AIモデルの役割について検討する。
最近の研究は、様々なフィードバック生成シナリオのための最先端モデルのベンチマークを行っている。
我々はGPT4Hints-GPT3.5Valという新しい手法を開発し、生成AIモデルの限界を推し進める。
論文 参考訳(メタデータ) (2023-10-05T17:02:59Z) - Input-Tuning: Adapting Unfamiliar Inputs to Frozen Pretrained Models [82.75572875007755]
NLGタスクの即時チューニングの発達を妨げる要因の1つは、馴染みの無い入力である、と我々は主張する。
これは、連続的なプロンプトと入力表現の両方を微調整する入力チューニングを提案する動機である。
提案する入力チューニングは概念的にシンプルで,実証的に強力である。
論文 参考訳(メタデータ) (2022-03-07T05:04:32Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
入力出力クエリの静的データセットからブラックボックス目的関数を最大化する入力を探索する問題を考える。
この問題を解決するための一般的なアプローチは、真の客観的関数を近似するプロキシモデルを維持することである。
ここでの大きな課題は、検索中に逆最適化された入力を避ける方法である。
論文 参考訳(メタデータ) (2021-10-27T05:37:12Z) - Generative Adversarial Networks for Annotated Data Augmentation in Data
Sparse NLU [0.76146285961466]
データスパーシティは、自然言語理解におけるモデル開発に関連する重要な課題の1つです。
GAN (Sequence Generative Adversarial Network) を用いたトレーニングデータ拡張によるNLUモデルの性能向上について報告する。
本実験により, 逐次生成逆数ネットワークを用いて生成した合成データにより, 複数の指標間で大きな性能向上が得られた。
論文 参考訳(メタデータ) (2020-12-09T20:38:17Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。