Long Story Short: a Summarize-then-Search Method for Long Video Question
Answering
- URL: http://arxiv.org/abs/2311.01233v1
- Date: Thu, 2 Nov 2023 13:36:11 GMT
- Title: Long Story Short: a Summarize-then-Search Method for Long Video Question
Answering
- Authors: Jiwan Chung, Youngjae Yu
- Abstract summary: We investigate if language models can extend their zero-shot reasoning abilities to long multimodal narratives in multimedia content.
We propose Long Story Short, a framework for narrative video QA that first summarizes the narrative of the video to a short plot and then searches parts of the video relevant to the question.
Our model outperforms state-of-the-art supervised models by a large margin, highlighting the potential of zero-shot QA for long videos.
- Score: 23.094728230459125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models such as GPT-3 have demonstrated an impressive
capability to adapt to new tasks without requiring task-specific training data.
This capability has been particularly effective in settings such as narrative
question answering, where the diversity of tasks is immense, but the available
supervision data is small. In this work, we investigate if such language models
can extend their zero-shot reasoning abilities to long multimodal narratives in
multimedia content such as drama, movies, and animation, where the story plays
an essential role. We propose Long Story Short, a framework for narrative video
QA that first summarizes the narrative of the video to a short plot and then
searches parts of the video relevant to the question. We also propose to
enhance visual matching with CLIPCheck. Our model outperforms state-of-the-art
supervised models by a large margin, highlighting the potential of zero-shot QA
for long videos.
Related papers
- ViLLa: Video Reasoning Segmentation with Large Language Model [48.75470418596875]
We propose a new video segmentation task - video reasoning segmentation.
The task is designed to output tracklets of segmentation masks given a complex input text query.
We present ViLLa: Video reasoning segmentation with a Large Language Model.
arXiv Detail & Related papers (2024-07-18T17:59:17Z) - Koala: Key frame-conditioned long video-LLM [70.52369588364992]
We propose a lightweight and self-supervised long video-LLM (Koala) to adapt pretrained vLLMs for generalizing to longer videos.
Our approach outperforms state-of-the-art large models by 3 - 6% in absolute accuracy across all tasks.
Surprisingly, we also empirically show that our approach not only helps a pretrained vLLM to understand long videos but also improves its accuracy on short-term action recognition.
arXiv Detail & Related papers (2024-04-05T18:33:04Z) - Analyzing Zero-Shot Abilities of Vision-Language Models on Video
Understanding Tasks [6.925770576386087]
We propose a detailed study on the generalization abilities of image-text models when evaluated on video understanding tasks in a zero-shot setting.
Our experiments show that image-text models exhibit impressive performance on video AR, video RT and video MC.
These findings shed a light on the benefits of adapting foundational image-text models to an array of video tasks while avoiding the costly pretraining step.
arXiv Detail & Related papers (2023-10-07T20:57:54Z) - Look, Remember and Reason: Grounded reasoning in videos with language
models [5.3445140425713245]
Multi-temporal language models (LM) have recently shown promising performance in high-level reasoning tasks on videos.
We propose training an LM end-to-end on low-level surrogate tasks, including object detection, re-identification, tracking, to endow the model with the required low-level visual capabilities.
We demonstrate the effectiveness of our framework on diverse visual reasoning tasks from the ACRE, CATER, Something-Else and STAR datasets.
arXiv Detail & Related papers (2023-06-30T16:31:14Z) - MIST: Multi-modal Iterative Spatial-Temporal Transformer for Long-form
Video Question Answering [73.61182342844639]
We introduce a new model named Multi-modal Iterative Spatial-temporal Transformer (MIST) to better adapt pre-trained models for long-form VideoQA.
MIST decomposes traditional dense spatial-temporal self-attention into cascaded segment and region selection modules.
Visual concepts at different granularities are then processed efficiently through an attention module.
arXiv Detail & Related papers (2022-12-19T15:05:40Z) - TL;DW? Summarizing Instructional Videos with Task Relevance &
Cross-Modal Saliency [133.75876535332003]
We focus on summarizing instructional videos, an under-explored area of video summarization.
Existing video summarization datasets rely on manual frame-level annotations.
We propose an instructional video summarization network that combines a context-aware temporal video encoder and a segment scoring transformer.
arXiv Detail & Related papers (2022-08-14T04:07:40Z) - Look Before you Speak: Visually Contextualized Utterances [88.58909442073858]
We create a task for predicting utterances in a video using both visual frames and transcribed speech as context.
By exploiting the large number of instructional videos online, we train a model to solve this task at scale, without the need for manual annotations.
Our model achieves state-of-the-art performance on a number of downstream VideoQA benchmarks.
arXiv Detail & Related papers (2020-12-10T14:47:02Z) - Co-attentional Transformers for Story-Based Video Understanding [24.211255523490692]
We propose a novel co-attentional transformer model to better capture long-term dependencies seen in visual stories such as dramas.
We evaluate our approach on the recently introduced DramaQA dataset which features character-centered video story understanding questions.
arXiv Detail & Related papers (2020-10-27T07:17:09Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
We propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions.
Our model is also comprised of dual-level attention (word/object and frame level), multi-head self-cross-integration for different sources (video and dense captions), and which pass more relevant information to gates.
We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-05-13T16:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.