Advancing the Search Frontier with AI Agents
- URL: http://arxiv.org/abs/2311.01235v2
- Date: Tue, 2 Apr 2024 19:22:27 GMT
- Title: Advancing the Search Frontier with AI Agents
- Authors: Ryen W. White,
- Abstract summary: Complex search tasks require more than support for rudimentary fact finding or re-finding.
The recent emergence of generative artificial intelligence (AI) has the potential to offer further assistance to searchers.
This article explores these issues and how AI agents are advancing the frontier of search system capabilities.
- Score: 6.839870353268828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As many of us in the information retrieval (IR) research community know and appreciate, search is far from being a solved problem. Millions of people struggle with tasks on search engines every day. Often, their struggles relate to the intrinsic complexity of their task and the failure of search systems to fully understand the task and serve relevant results. The task motivates the search, creating the gap/problematic situation that searchers attempt to bridge/resolve and drives search behavior as they work through different task facets. Complex search tasks require more than support for rudimentary fact finding or re-finding. Research on methods to support complex tasks includes work on generating query and website suggestions, personalizing and contextualizing search, and developing new search experiences, including those that span time and space. The recent emergence of generative artificial intelligence (AI) and the arrival of assistive agents, based on this technology, has the potential to offer further assistance to searchers, especially those engaged in complex tasks. There are profound implications from these advances for the design of intelligent systems and for the future of search itself. This article, based on a keynote by the author at the 2023 ACM SIGIR Conference, explores these issues and how AI agents are advancing the frontier of search system capabilities, with a special focus on information interaction and complex task completion.
Related papers
- A Survey of Conversational Search [44.09402706387407]
We explore the recent advancements and potential future directions in conversational search.
We highlight the integration of large language models (LLMs) in enhancing these systems.
We provide insights into real-world applications and robust evaluations of current conversational search systems.
arXiv Detail & Related papers (2024-10-21T01:54:46Z) - A Survey on Complex Tasks for Goal-Directed Interactive Agents [60.53915548970061]
This survey compiles relevant tasks and environments for evaluating goal-directed interactive agents.
An up-to-date compilation of relevant resources can be found on our project website.
arXiv Detail & Related papers (2024-09-27T08:17:53Z) - How Mature is Requirements Engineering for AI-based Systems? A Systematic Mapping Study on Practices, Challenges, and Future Research Directions [5.6818729232602205]
It is unclear if existing RE methods are sufficient or if new ones are needed to address these challenges.
Existing RE4AI research focuses mainly on requirements analysis and elicitation, with most practices applied in these areas.
We identified requirements specification, explainability, and the gap between machine learning engineers and end-users as the most prevalent challenges.
arXiv Detail & Related papers (2024-09-11T11:28:16Z) - MindSearch: Mimicking Human Minds Elicits Deep AI Searcher [20.729251584466983]
We introduce MindSearch to mimic the human minds in web information seeking and integration.
The framework can be instantiated by a simple yet effective LLM-based multi-agent framework.
MindSearch demonstrates significant improvement in the response quality in terms of depth and breadth.
arXiv Detail & Related papers (2024-07-29T17:12:40Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
This paper introduces SurveyAgent, a novel conversational system designed to provide personalized and efficient research survey assistance to researchers.
SurveyAgent integrates three key modules: Knowledge Management for organizing papers, Recommendation for discovering relevant literature, and Query Answering for engaging with content on a deeper level.
Our evaluation demonstrates SurveyAgent's effectiveness in streamlining research activities, showcasing its capability to facilitate how researchers interact with scientific literature.
arXiv Detail & Related papers (2024-04-09T15:01:51Z) - CoSearchAgent: A Lightweight Collaborative Search Agent with Large
Language Models [13.108014924612114]
We propose CoSearchAgent, a lightweight collaborative search agent powered by large language models (LLMs)
CoSearchAgent is designed as a Slack plugin that can support collaborative search during multi-party conversations on this platform.
It can respond to user queries with answers grounded on the relevant search results.
arXiv Detail & Related papers (2024-02-09T12:10:00Z) - Large Search Model: Redefining Search Stack in the Era of LLMs [63.503320030117145]
We introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM)
All tasks are formulated as autoregressive text generation problems, allowing for the customization of tasks through the use of natural language prompts.
This proposed framework capitalizes on the strong language understanding and reasoning capabilities of LLMs, offering the potential to enhance search result quality while simultaneously simplifying the existing cumbersome search stack.
arXiv Detail & Related papers (2023-10-23T05:52:09Z) - Towards Collaborative Question Answering: A Preliminary Study [63.91687114660126]
We propose CollabQA, a novel QA task in which several expert agents coordinated by a moderator work together to answer questions that cannot be answered with any single agent alone.
We make a synthetic dataset of a large knowledge graph that can be distributed to experts.
We show that the problem can be challenging without introducing prior to the collaboration structure, unless experts are perfect and uniform.
arXiv Detail & Related papers (2022-01-24T14:27:00Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z) - On the Social and Technical Challenges of Web Search Autosuggestion
Moderation [118.47867428272878]
Autosuggestions are typically generated by machine learning (ML) systems trained on a corpus of search logs and document representations.
While current search engines have become increasingly proficient at suppressing such problematic suggestions, there are still persistent issues that remain.
We discuss several dimensions of problematic suggestions, difficult issues along the pipeline, and why our discussion applies to the increasing number of applications beyond web search.
arXiv Detail & Related papers (2020-07-09T19:22:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.