Robustness for Free: Quality-Diversity Driven Discovery of Agile Soft
Robotic Gaits
- URL: http://arxiv.org/abs/2311.01245v1
- Date: Thu, 2 Nov 2023 14:00:11 GMT
- Title: Robustness for Free: Quality-Diversity Driven Discovery of Agile Soft
Robotic Gaits
- Authors: John Daly, Daniel Casper, Muhammad Farooq, Andrew James, Ali Khan,
Phoenix Mulgrew, Daniel Tyebkhan, Bao Vo, John Rieffel
- Abstract summary: We show how Quality Diversity Algorithms can produce repertoires of gaits robust to changing terrains.
This robustness significantly out-performs that of gaits produced by a single objective optimization algorithm.
- Score: 0.7829600874436199
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Soft robotics aims to develop robots able to adapt their behavior across a
wide range of unstructured and unknown environments. A critical challenge of
soft robotic control is that nonlinear dynamics often result in complex
behaviors hard to model and predict. Typically behaviors for mobile soft robots
are discovered through empirical trial and error and hand-tuning. More
recently, optimization algorithms such as Genetic Algorithms (GA) have been
used to discover gaits, but these behaviors are often optimized for a single
environment or terrain, and can be brittle to unplanned changes to terrain. In
this paper we demonstrate how Quality Diversity Algorithms, which search of a
range of high-performing behaviors, can produce repertoires of gaits that are
robust to changing terrains. This robustness significantly out-performs that of
gaits produced by a single objective optimization algorithm.
Related papers
- DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Automated Gait Generation For Walking, Soft Robotic Quadrupeds [6.005998680766498]
Gait generation for soft robots is challenging due to the nonlinear dynamics and high dimensional input spaces of soft actuators.
We present a sample-efficient, simulation free, method for self-generating soft robot gaits.
This is the first demonstration of completely autonomous gait generation in a soft robot.
arXiv Detail & Related papers (2023-09-30T21:31:30Z) - SoftZoo: A Soft Robot Co-design Benchmark For Locomotion In Diverse
Environments [111.91255476270526]
We introduce SoftZoo, a soft robot co-design platform for locomotion in diverse environments.
SoftZoo supports an extensive, naturally-inspired material set, including the ability to simulate environments such as flat ground, desert, wetland, clay, ice, snow, shallow water, and ocean.
It provides a variety of tasks relevant for soft robotics, including fast locomotion, agile turning, and path following, as well as differentiable design representations for morphology and control.
arXiv Detail & Related papers (2023-03-16T17:59:50Z) - Domain Randomization for Robust, Affordable and Effective Closed-loop
Control of Soft Robots [10.977130974626668]
Soft robots are gaining popularity thanks to their intrinsic safety to contacts and adaptability.
We show how Domain Randomization (DR) can solve this problem by enhancing RL policies for soft robots.
We introduce a novel algorithmic extension to previous adaptive domain randomization methods for the automatic inference of dynamics parameters for deformable objects.
arXiv Detail & Related papers (2023-03-07T18:50:00Z) - Discovering Unsupervised Behaviours from Full-State Trajectories [1.827510863075184]
We propose an analysis of Autonomous Robots Realising their Abilities; a Quality-Diversity algorithm that autonomously finds behavioural characterisations.
We evaluate this approach on a simulated robotic environment, where the robot has to autonomously discover its abilities from its full-state trajectories.
More specifically, the analysed approach autonomously finds policies that make the robot move to diverse positions, but also utilise its legs in diverse ways, and even perform half-rolls.
arXiv Detail & Related papers (2022-11-22T16:57:52Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Learning to Walk Autonomously via Reset-Free Quality-Diversity [73.08073762433376]
Quality-Diversity algorithms can discover large and complex behavioural repertoires consisting of both diverse and high-performing skills.
Existing QD algorithms need large numbers of evaluations as well as episodic resets, which require manual human supervision and interventions.
This paper proposes Reset-Free Quality-Diversity optimization (RF-QD) as a step towards autonomous learning for robotics in open-ended environments.
arXiv Detail & Related papers (2022-04-07T14:07:51Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
Planning motions that take human comfort into account is not a part of the human-robot handover process.
We propose to generate smooth motions via an efficient model-predictive control framework.
We conduct human-to-robot handover experiments on a diverse set of objects with several users.
arXiv Detail & Related papers (2022-03-31T23:08:20Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - Evolutionary Gait Transfer of Multi-Legged Robots in Complex Terrains [14.787379075870383]
This paper proposes a transfer learning-based evolutionary framework for gait optimization, named Tr-GO.
The idea is to initialize a high-quality population by using the technique of transfer learning, so any kind of population-based optimization algorithms can be seamlessly integrated into this framework.
The experimental results show the effectiveness of the proposed framework for the gait optimization problem based on three multi-objective evolutionary algorithms.
arXiv Detail & Related papers (2020-12-24T16:41:36Z) - Behavioral Repertoires for Soft Tensegrity Robots [0.0]
Mobile soft robots offer compelling applications in fields ranging from urban search and rescue to planetary exploration.
A critical challenge of soft robotic control is that the nonlinear dynamics imposed by soft materials often result in complex behaviors that are counterintuitive and hard to model or predict.
In this work we employ a Quality Diversity Algorithm running model-free on a physical soft tensegrity robot that autonomously generates a behavioral repertoire with no priori knowledge of the robot dynamics, and minimal human intervention.
arXiv Detail & Related papers (2020-09-23T00:09:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.