Multimodal and Force-Matched Imitation Learning with a See-Through Visuotactile Sensor
- URL: http://arxiv.org/abs/2311.01248v5
- Date: Sun, 26 Jan 2025 15:03:06 GMT
- Title: Multimodal and Force-Matched Imitation Learning with a See-Through Visuotactile Sensor
- Authors: Trevor Ablett, Oliver Limoyo, Adam Sigal, Affan Jilani, Jonathan Kelly, Kaleem Siddiqi, Francois Hogan, Gregory Dudek,
- Abstract summary: We leverage a multimodal visuotactile sensor within the framework of imitation learning (IL) to perform contact-rich tasks.
We introduce two algorithmic contributions, tactile force matching and learned mode switching, as complimentary methods for improving IL.
Our results show that the inclusion of force matching raises average policy success rates by 62.5%, visuotactile mode switching by 30.3%, and visuotactile data as a policy input by 42.5%.
- Score: 14.492202828369127
- License:
- Abstract: Contact-rich tasks continue to present many challenges for robotic manipulation. In this work, we leverage a multimodal visuotactile sensor within the framework of imitation learning (IL) to perform contact-rich tasks that involve relative motion (e.g., slipping and sliding) between the end-effector and the manipulated object. We introduce two algorithmic contributions, tactile force matching and learned mode switching, as complimentary methods for improving IL. Tactile force matching enhances kinesthetic teaching by reading approximate forces during the demonstration and generating an adapted robot trajectory that recreates the recorded forces. Learned mode switching uses IL to couple visual and tactile sensor modes with the learned motion policy, simplifying the transition from reaching to contacting. We perform robotic manipulation experiments on four door-opening tasks with a variety of observation and algorithm configurations to study the utility of multimodal visuotactile sensing and our proposed improvements. Our results show that the inclusion of force matching raises average policy success rates by 62.5%, visuotactile mode switching by 30.3%, and visuotactile data as a policy input by 42.5%, emphasizing the value of see-through tactile sensing for IL, both for data collection to allow force matching, and for policy execution to enable accurate task feedback. Project site: https://papers.starslab.ca/sts-il/
Related papers
- Learning Precise, Contact-Rich Manipulation through Uncalibrated Tactile Skins [17.412763585521688]
We present the Visuo-Skin (ViSk) framework, a simple approach that uses a transformer-based policy and treats skin sensor data as additional tokens alongside visual information.
ViSk significantly outperforms both vision-only and optical tactile sensing based policies.
Further analysis reveals that combining tactile and visual modalities enhances policy performance and spatial generalization, achieving an average improvement of 27.5% across tasks.
arXiv Detail & Related papers (2024-10-22T17:59:49Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
We propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction.
The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms.
arXiv Detail & Related papers (2024-06-01T13:28:31Z) - Learning Visuotactile Skills with Two Multifingered Hands [80.99370364907278]
We explore learning from human demonstrations using a bimanual system with multifingered hands and visuotactile data.
Our results mark a promising step forward in bimanual multifingered manipulation from visuotactile data.
arXiv Detail & Related papers (2024-04-25T17:59:41Z) - The Power of the Senses: Generalizable Manipulation from Vision and
Touch through Masked Multimodal Learning [60.91637862768949]
We propose Masked Multimodal Learning (M3L) to fuse visual and tactile information in a reinforcement learning setting.
M3L learns a policy and visual-tactile representations based on masked autoencoding.
We evaluate M3L on three simulated environments with both visual and tactile observations.
arXiv Detail & Related papers (2023-11-02T01:33:00Z) - MimicTouch: Leveraging Multi-modal Human Tactile Demonstrations for Contact-rich Manipulation [8.738889129462013]
"MimicTouch" is a novel framework for learning policies directly from demonstrations provided by human users with their hands.
The key innovations are i) a human tactile data collection system which collects multi-modal tactile dataset for learning human's tactile-guided control strategy, and ii) an imitation learning-based framework for learning human's tactile-guided control strategy through such data.
arXiv Detail & Related papers (2023-10-25T18:34:06Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
Humans rely on touch and tactile sensing for a lot of dexterous manipulation tasks.
vision-based tactile sensors are being widely used for various robotic perception and control tasks.
We present a method for interactive perception using vision-based tactile sensors for a part mating task.
arXiv Detail & Related papers (2023-03-10T16:27:37Z) - Visual-Tactile Multimodality for Following Deformable Linear Objects
Using Reinforcement Learning [15.758583731036007]
We study the problem of using vision and tactile inputs together to complete the task of following deformable linear objects.
We create a Reinforcement Learning agent using different sensing modalities and investigate how its behaviour can be boosted.
Our experiments show that the use of both vision and tactile inputs, together with proprioception, allows the agent to complete the task in up to 92% of cases.
arXiv Detail & Related papers (2022-03-31T21:59:08Z) - Error-Aware Imitation Learning from Teleoperation Data for Mobile
Manipulation [54.31414116478024]
In mobile manipulation (MM), robots can both navigate within and interact with their environment.
In this work, we explore how to apply imitation learning (IL) to learn continuous visuo-motor policies for MM tasks.
arXiv Detail & Related papers (2021-12-09T23:54:59Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.