Optimization Efficient Open-World Visual Region Recognition
- URL: http://arxiv.org/abs/2311.01373v2
- Date: Thu, 13 Jun 2024 16:28:14 GMT
- Title: Optimization Efficient Open-World Visual Region Recognition
- Authors: Haosen Yang, Chuofan Ma, Bin Wen, Yi Jiang, Zehuan Yuan, Xiatian Zhu,
- Abstract summary: RegionSpot integrates position-aware localization knowledge from a localization foundation model with semantic information from a ViL model.
Experiments in open-world object recognition show that our RegionSpot achieves significant performance gain over prior alternatives.
- Score: 55.76437190434433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the semantics of individual regions or patches of unconstrained images, such as open-world object detection, remains a critical yet challenging task in computer vision. Building on the success of powerful image-level vision-language (ViL) foundation models like CLIP, recent efforts have sought to harness their capabilities by either training a contrastive model from scratch with an extensive collection of region-label pairs or aligning the outputs of a detection model with image-level representations of region proposals. Despite notable progress, these approaches are plagued by computationally intensive training requirements, susceptibility to data noise, and deficiency in contextual information. To address these limitations, we explore the synergistic potential of off-the-shelf foundation models, leveraging their respective strengths in localization and semantics. We introduce a novel, generic, and efficient architecture, named RegionSpot, designed to integrate position-aware localization knowledge from a localization foundation model (e.g., SAM) with semantic information from a ViL model (e.g., CLIP). To fully exploit pretrained knowledge while minimizing training overhead, we keep both foundation models frozen, focusing optimization efforts solely on a lightweight attention-based knowledge integration module. Extensive experiments in open-world object recognition show that our RegionSpot achieves significant performance gain over prior alternatives, along with substantial computational savings (e.g., training our model with 3 million data in a single day using 8 V100 GPUs). RegionSpot outperforms GLIP-L by 2.9 in mAP on LVIS val set, with an even larger margin of 13.1 AP for more challenging and rare categories, and a 2.5 AP increase on ODinW. Furthermore, it exceeds GroundingDINO-L by 11.0 AP for rare categories on the LVIS minival set.
Related papers
- Adaptive Masking Enhances Visual Grounding [12.793586888511978]
We propose IMAGE, Interpretative MAsking with Gaussian radiation modEling, to enhance vocabulary grounding in low-shot learning scenarios.
We evaluate the efficacy of our approach on benchmark datasets, including COCO and ODinW, demonstrating its superior performance in zero-shot and few-shot tasks.
arXiv Detail & Related papers (2024-10-04T05:48:02Z) - UAL-Bench: The First Comprehensive Unusual Activity Localization Benchmark [20.15425745473231]
Localizing unusual activities, such as human errors or surveillance incidents, in videos holds practical significance.
To explore foundation models' capability in localizing unusual activity, we introduce UAL-Bench.
UAL-Bench features three video datasets: UAG-OOPS, UAG- SSBD, UAG-FunQA, and an instruction-tune dataset: OOPS-UAG-Instruct.
Our results show the VLM-LLM approach excels in localizing short-span unusual events and predicting their onset (start time) more accurately than Vid-LLMs.
arXiv Detail & Related papers (2024-10-02T02:33:09Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
We introduce smileGeo, a novel visual geo-localization framework.
By inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information.
Results show that our approach significantly outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2024-08-21T03:31:30Z) - MoE-LLaVA: Mixture of Experts for Large Vision-Language Models [49.32669226551026]
We propose a simple yet effective training strategy MoE-Tuning for LVLMs.
MoE-LLaVA, a MoE-based sparse LVLM architecture, uniquely activates only the top-k experts through routers.
Experiments show the significant performance of MoE-LLaVA in a variety of visual understanding and object hallucination benchmarks.
arXiv Detail & Related papers (2024-01-29T08:13:40Z) - Revisiting Active Learning in the Era of Vision Foundation Models [0.0]
Foundation vision or vision-language models are trained on large unlabeled or noisy data.
They are a natural fit for active learning (AL), which aims to maximize labeling efficiency.
We evaluate how foundation models influence three critical components of effective AL.
arXiv Detail & Related papers (2024-01-25T22:50:39Z) - Generalized Robot 3D Vision-Language Model with Fast Rendering and Pre-Training Vision-Language Alignment [55.11291053011696]
This work presents a framework for dealing with 3D scene understanding when the labeled scenes are quite limited.
To extract knowledge for novel categories from the pre-trained vision-language models, we propose a hierarchical feature-aligned pre-training and knowledge distillation strategy.
In the limited reconstruction case, our proposed approach, termed WS3D++, ranks 1st on the large-scale ScanNet benchmark.
arXiv Detail & Related papers (2023-12-01T15:47:04Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVA is an innovative unifying multi-task framework that integrates pixel, regional, and global features to refine the perceptual faculties of MLLMs.
This work contributes a novel mask-based multi-task dataset comprising 277K samples, crafted to challenge and assess the fine-grained perception capabilities of MLLMs.
arXiv Detail & Related papers (2023-11-09T13:18:27Z) - Lightweight Portrait Matting via Regional Attention and Refinement [7.206702064210176]
We present a lightweight model for high resolution portrait matting.
The model does not use any auxiliary inputs such as trimaps or background captures.
It achieves real time performance for HD videos and near real time for 4K.
arXiv Detail & Related papers (2023-11-07T07:14:28Z) - Zero-Shot Refinement of Buildings' Segmentation Models using SAM [6.110856077714895]
We present a novel approach to adapt foundation models to address existing models' generalization dropback.
Among several models, our focus centers on the Segment Anything Model (SAM)
SAM does not offer recognition abilities and thus fails to classify and tag localized objects.
This novel approach augments SAM with recognition abilities, a first of its kind.
arXiv Detail & Related papers (2023-10-03T07:19:59Z) - ECEA: Extensible Co-Existing Attention for Few-Shot Object Detection [52.16237548064387]
Few-shot object detection (FSOD) identifies objects from extremely few annotated samples.
Most existing FSOD methods, recently, apply the two-stage learning paradigm, which transfers the knowledge learned from abundant base classes to assist the few-shot detectors by learning the global features.
We propose an Extensible Co-Existing Attention (ECEA) module to enable the model to infer the global object according to the local parts.
arXiv Detail & Related papers (2023-09-15T06:55:43Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Conditioning Covert Geo-Location (CGL) Detection on Semantic Class
Information [5.660207256468971]
Task for identification of potential hideouts termed Covert Geo-Location (CCGL) detection was proposed by Saha et al.
No attempts were made to utilize semantic class information, which is crucial for obscured detection.
In this paper, we propose a multitask-learning-based approach to achieve 2 goals - i) extraction of features having semantic class information; ii) robust training of the common encoder, exploiting large standard annotated datasets as training set for the auxiliary task (semantic segmentation).
arXiv Detail & Related papers (2022-11-27T07:21:59Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
We propose a PriorGuided Local (PGL) self-supervised model that learns the region-wise local consistency in the latent feature space.
Our PGL model learns the distinctive representations of local regions, and hence is able to retain structural information.
arXiv Detail & Related papers (2020-11-25T11:03:11Z) - Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization [53.99850033746663]
We study the problem of learning localization model on target classes with weakly supervised image labels.
In this work, we argue that learning only an objectness function is a weak form of knowledge transfer.
Experiments on the COCO and ILSVRC 2013 detection datasets show that the performance of the localization model improves significantly with the inclusion of pairwise similarity function.
arXiv Detail & Related papers (2020-03-18T17:53:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.