論文の概要: Patch-Based Deep Unsupervised Image Segmentation using Graph Cuts
- arxiv url: http://arxiv.org/abs/2311.01475v1
- Date: Wed, 1 Nov 2023 19:59:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-06 16:26:55.507998
- Title: Patch-Based Deep Unsupervised Image Segmentation using Graph Cuts
- Title(参考訳): グラフカットを用いたパッチベース深部教師なし画像分割
- Authors: Isaac Wasserman and Jeova Farias Sales Rocha Neto
- Abstract要約: 本稿では,従来のグラフ手法のアルゴリズム的助けを借りて,教師なし特徴抽出の進歩を橋渡しするパッチベースの教師なし画像分割戦略を提案する。
画像パッチを分類するために訓練された単純な畳み込みニューラルネットワークは、自然に最先端の完全畳み込み非教師付きピクセルレベルのセグメンタに繋がることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised image segmentation aims at grouping different semantic patterns
in an image without the use of human annotation. Similarly, image clustering
searches for groupings of images based on their semantic content without
supervision. Classically, both problems have captivated researchers as they
drew from sound mathematical concepts to produce concrete applications. With
the emergence of deep learning, the scientific community turned its attention
to complex neural network-based solvers that achieved impressive results in
those domains but rarely leveraged the advances made by classical methods. In
this work, we propose a patch-based unsupervised image segmentation strategy
that bridges advances in unsupervised feature extraction from deep clustering
methods with the algorithmic help of classical graph-based methods. We show
that a simple convolutional neural network, trained to classify image patches
and iteratively regularized using graph cuts, naturally leads to a
state-of-the-art fully-convolutional unsupervised pixel-level segmenter.
Furthermore, we demonstrate that this is the ideal setting for leveraging the
patch-level pairwise features generated by vision transformer models. Our
results on real image data demonstrate the effectiveness of our proposed
methodology.
- Abstract(参考訳): 教師なしのイメージセグメンテーションは、人間のアノテーションを使わずに、画像内の異なる意味パターンをグループ化することを目的としている。
同様に、イメージクラスタリングは、監督なしでセマンティックコンテンツに基づいて画像のグルーピングを検索する。
古典的には、どちらの問題も、健全な数学的概念から具体的応用を生み出した研究者を魅了している。
深層学習の出現に伴い、科学界は複雑なニューラルネットワークベースの解法に注目を向け、これらの領域で顕著な成果を上げたが、古典的な手法による進歩を活用することはめったになかった。
本研究では,従来のグラフ手法のアルゴリズム的助けを借りて,ディープクラスタリング手法から教師なし特徴抽出の進歩を橋渡しするパッチベースの教師なし画像分割手法を提案する。
画像パッチの分類とグラフカットによる反復正規化を訓練した単純な畳み込みニューラルネットワークは、自然と最先端の完全畳み込み型非教師付きピクセルレベルのセグメンタをもたらす。
さらに,視覚トランスフォーマーモデルが生成するパッチレベルのペアワイズ機能を活用する上で,これが理想的な設定であることを示す。
実画像データを用いた結果から,提案手法の有効性を示す。
関連論文リスト
- UnSegGNet: Unsupervised Image Segmentation using Graph Neural Networks [9.268228808049951]
この研究は、教師なし医療画像とコンピュータビジョンの幅広い分野に貢献する。
これは、現実世界の課題に沿うイメージセグメンテーションのための革新的な方法論である。
提案手法は,医用画像,リモートセンシング,物体認識など,多様な応用の可能性を秘めている。
論文 参考訳(メタデータ) (2024-05-09T19:02:00Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
本稿では,事前学習したGANを用いて,高品質な画像を生成することで,半教師付き部分分割タスクに対処することに焦点を当てる。
特に、アノテータ学習を学習から学習までの問題として定式化する。
提案手法は,実画像,生成された画像,さらには解析的に描画された画像を含む,幅広いラベル付き画像からアノテータを学習可能であることを示す。
論文 参考訳(メタデータ) (2022-11-06T01:29:22Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
画像操作検出の目的は、画像内の操作された領域を特定し、特定することである。
最近のアプローチでは、画像に残っている改ざんするアーティファクトをキャプチャするために、洗練された畳み込みニューラルネットワーク(CNN)が採用されている。
本稿では2つの並列分岐からなる階層型グラフ畳み込みネットワーク(HGCN-Net)を提案する。
論文 参考訳(メタデータ) (2022-01-15T01:54:25Z) - Unsupervised Image Segmentation by Mutual Information Maximization and
Adversarial Regularization [7.165364364478119]
InMARS(Information Maximization and Adrial Regularization)と呼ばれる新しい教師なしセマンティックセマンティックセマンティクス手法を提案する。
シーンを知覚群に解析する人間の知覚に触発され、提案手法はまず、入力画像を意味のある領域(スーパーピクセルとも呼ばれる)に分割する。
次に、相互情報最大化(Multual-Information-Maximization)と、それらの領域を意味論的に意味のあるクラスにクラスタ化するための敵対的トレーニング戦略を利用する。
提案手法は2つの非教師付きセマンティックセグメンテーションデータセット上での最先端性能を実現することを実証した。
論文 参考訳(メタデータ) (2021-07-01T18:36:27Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - Graph Neural Networks for UnsupervisedDomain Adaptation of
Histopathological ImageAnalytics [22.04114134677181]
組織像解析のための教師なし領域適応のための新しい手法を提案する。
特徴空間に画像を埋め込むバックボーンと、ラベルで画像の監視信号をプロパゲートするグラフニューラルネットワーク層に基づいている。
実験では、4つの公開データセット上での最先端のパフォーマンスを評価する。
論文 参考訳(メタデータ) (2020-08-21T04:53:44Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
グループベース画像復元法は,パッチ間の類似性収集に有効である。
各パッチに対して、検索ウィンドウ内で最もよく似たパッチを見つけ、グループ化する。
提案手法は, 主観的, 客観的両面において, 最先端の復調法よりも優れている。
論文 参考訳(メタデータ) (2020-08-09T15:12:16Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
2つのニューラルコアテンションを分類器に組み込んで、画像間のセマンティックな類似点と相違点をキャプチャする。
オブジェクトパターン学習の強化に加えて、コアテンションは他の関連する画像からのコンテキストを活用して、ローカライズマップの推論を改善することができる。
提案アルゴリズムは,これらすべての設定に対して新たな最先端性を設定し,その有効性と一般化性を示す。
論文 参考訳(メタデータ) (2020-07-03T21:53:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。