論文の概要: A Statistical Guarantee for Representation Transfer in Multitask
Imitation Learning
- arxiv url: http://arxiv.org/abs/2311.01589v1
- Date: Thu, 2 Nov 2023 20:45:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-06 15:46:58.785589
- Title: A Statistical Guarantee for Representation Transfer in Multitask
Imitation Learning
- Title(参考訳): マルチタスク模倣学習における表現伝達の統計的保証
- Authors: Bryan Chan, Karime Pereida, and James Bergstra
- Abstract要約: マルチタスク模倣学習のための伝達表現は、新しいタスクの学習におけるサンプル効率の向上をもたらす可能性がある。
十分な多様なソースタスクを用いて表現を訓練した場合、ターゲットタスクのサンプル効率が向上することを示す統計的保証を提供する。
- 参考スコア(独自算出の注目度): 0.3686808512438362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transferring representation for multitask imitation learning has the
potential to provide improved sample efficiency on learning new tasks, when
compared to learning from scratch. In this work, we provide a statistical
guarantee indicating that we can indeed achieve improved sample efficiency on
the target task when a representation is trained using sufficiently diverse
source tasks. Our theoretical results can be readily extended to account for
commonly used neural network architectures with realistic assumptions. We
conduct empirical analyses that align with our theoretical findings on four
simulated environments$\unicode{x2014}$in particular leveraging more data from
source tasks can improve sample efficiency on learning in the new task.
- Abstract(参考訳): マルチタスク模倣学習の伝達表現は、スクラッチからの学習と比較して、新しいタスクの学習においてサンプル効率を向上させる可能性がある。
本研究では,多種多様なソースタスクを用いて表現を訓練した場合,対象タスクのサンプル効率が向上することを示す統計的保証を提供する。
我々の理論的結果は、現実的な仮定でよく使われるニューラルネットワークアーキテクチャを考慮して容易に拡張できる。
我々は,4つのシミュレーション環境における理論的知見と一致する実験分析を行い,特にソースタスクからより多くのデータを活用することで,新しいタスクにおける学習におけるサンプル効率を向上させることができることを示した。
関連論文リスト
- Sample Efficient Myopic Exploration Through Multitask Reinforcement
Learning with Diverse Tasks [53.44714413181162]
本稿では, エージェントが十分に多様なタスクセットで訓練された場合, 筋電図探索設計による一般的なポリシー共有アルゴリズムは, サンプル効率がよいことを示す。
我々の知る限りでは、これはMTRLの「探索的利益」の初めての理論的実証である。
論文 参考訳(メタデータ) (2024-03-03T22:57:44Z) - Sharing Knowledge in Multi-Task Deep Reinforcement Learning [57.38874587065694]
マルチタスク強化学習において、ディープニューラルネットワークを効果的に活用するためのタスク間の表現の共有の利点について検討する。
我々は,タスク間で表現を共有するのに便利な条件を強調する理論的保証を提供することで,これを証明している。
論文 参考訳(メタデータ) (2024-01-17T19:31:21Z) - Provable Benefit of Multitask Representation Learning in Reinforcement
Learning [46.11628795660159]
本稿では,低ランクマルコフ決定過程(MDP)モデルに基づく表現学習の利点を理論的に特徴づける。
我々の知る限りでは、探索に基づく報酬なしマルチタスク強化学習における表現学習の利点を特徴づける最初の理論的研究である。
論文 参考訳(メタデータ) (2022-06-13T04:29:02Z) - Provable Benefits of Representational Transfer in Reinforcement Learning [59.712501044999875]
本稿では,RLにおける表現伝達の問題について検討し,エージェントがまず複数のソースタスクを事前訓練し,共有表現を発見する。
本稿では,ソースタスクに対する生成的アクセスが与えられた場合,次に続く線形RL手法がほぼ最適ポリシーに迅速に収束する表現を発見できることを示す。
論文 参考訳(メタデータ) (2022-05-29T04:31:29Z) - Provable and Efficient Continual Representation Learning [40.78975699391065]
連続学習(CL)では、悲惨なことを忘れずに一連のタスクを学習できるモデルを設計することが目的である。
我々は、新しいタスクが到着するにつれて進化する表現を学習する連続表現学習の課題について研究する。
初期タスクが大きなサンプルサイズと高い"表現多様性"を持つ場合,CLのメリットが示される。
論文 参考訳(メタデータ) (2022-03-03T21:23:08Z) - Active Multi-Task Representation Learning [50.13453053304159]
本研究は,アクティブラーニングの手法を活用することで,資源タスクのサンプリングに関する最初の公式な研究を行う。
提案手法は, 対象タスクに対する各ソースタスクの関連性を反復的に推定し, その関連性に基づいて各ソースタスクからサンプルを抽出するアルゴリズムである。
論文 参考訳(メタデータ) (2022-02-02T08:23:24Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
少ないショット学習は、少数の例から見れば、新しいタスクに対処できる表現を学習することを目的としている。
近年の研究では,タスク分布がモデルの性能に重要な役割を担っていることが示されている。
タスクの多様性がメタ学習アルゴリズムに与える影響を評価するために,多種多様なモデルとデータセットのタスク分布について検討する。
論文 参考訳(メタデータ) (2022-01-27T19:39:07Z) - Efficient Reinforcement Learning in Resource Allocation Problems Through
Permutation Invariant Multi-task Learning [6.247939901619901]
特定の環境では、利用可能なデータはマルチタスク学習の形式で劇的に向上できることを示す。
我々は,この条件下でのサンプル効率の利得に結びついた理論的性能を提供する。
これは、適切なニューラルネットワークアーキテクチャの設計と優先順位付けされたタスクサンプリング戦略を含む、マルチタスク学習への新しいアプローチを動機付ける。
論文 参考訳(メタデータ) (2021-02-18T14:13:02Z) - Understanding and Improving Information Transfer in Multi-Task Learning [14.43111978531182]
すべてのタスクに対して共有モジュール,各タスクに対して別個の出力モジュールを備えたアーキテクチャについて検討する。
タスクデータ間の不一致が負の転送(または性能の低下)を引き起こし、ポジティブな転送に十分な条件を提供することを示す。
理論的洞察から着想を得た結果,タスクの埋め込みレイヤの整合がマルチタスクトレーニングやトランスファー学習のパフォーマンス向上につながることが示された。
論文 参考訳(メタデータ) (2020-05-02T23:43:52Z) - Exploring and Predicting Transferability across NLP Tasks [115.6278033699853]
本研究では,33のNLPタスク間の伝達可能性について検討した。
以上の結果から,転帰学習は従来考えられていたよりも有益であることが示唆された。
また,特定の対象タスクに対して最も転送可能なソースタスクを予測するために使用できるタスク埋め込みも開発した。
論文 参考訳(メタデータ) (2020-05-02T09:39:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。