A Statistical Guarantee for Representation Transfer in Multitask
Imitation Learning
- URL: http://arxiv.org/abs/2311.01589v1
- Date: Thu, 2 Nov 2023 20:45:29 GMT
- Title: A Statistical Guarantee for Representation Transfer in Multitask
Imitation Learning
- Authors: Bryan Chan, Karime Pereida, and James Bergstra
- Abstract summary: Transferring representation for multitask imitation learning has the potential to provide improved sample efficiency on learning new tasks.
We provide a statistical guarantee indicating that we can indeed achieve improved sample efficiency on the target task when a representation is trained using sufficiently diverse source tasks.
- Score: 0.3686808512438362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transferring representation for multitask imitation learning has the
potential to provide improved sample efficiency on learning new tasks, when
compared to learning from scratch. In this work, we provide a statistical
guarantee indicating that we can indeed achieve improved sample efficiency on
the target task when a representation is trained using sufficiently diverse
source tasks. Our theoretical results can be readily extended to account for
commonly used neural network architectures with realistic assumptions. We
conduct empirical analyses that align with our theoretical findings on four
simulated environments$\unicode{x2014}$in particular leveraging more data from
source tasks can improve sample efficiency on learning in the new task.
Related papers
- Sample Efficient Myopic Exploration Through Multitask Reinforcement
Learning with Diverse Tasks [53.44714413181162]
This paper shows that when an agent is trained on a sufficiently diverse set of tasks, a generic policy-sharing algorithm with myopic exploration design can be sample-efficient.
To the best of our knowledge, this is the first theoretical demonstration of the "exploration benefits" of MTRL.
arXiv Detail & Related papers (2024-03-03T22:57:44Z) - Sharing Knowledge in Multi-Task Deep Reinforcement Learning [57.38874587065694]
We study the benefit of sharing representations among tasks to enable the effective use of deep neural networks in Multi-Task Reinforcement Learning.
We prove this by providing theoretical guarantees that highlight the conditions for which is convenient to share representations among tasks.
arXiv Detail & Related papers (2024-01-17T19:31:21Z) - Provable Benefit of Multitask Representation Learning in Reinforcement
Learning [46.11628795660159]
This paper theoretically characterizes the benefit of representation learning under the low-rank Markov decision process (MDP) model.
To the best of our knowledge, this is the first theoretical study that characterizes the benefit of representation learning in exploration-based reward-free multitask reinforcement learning.
arXiv Detail & Related papers (2022-06-13T04:29:02Z) - Provable Benefits of Representational Transfer in Reinforcement Learning [59.712501044999875]
We study the problem of representational transfer in RL, where an agent first pretrains in a number of source tasks to discover a shared representation.
We show that given generative access to source tasks, we can discover a representation, using which subsequent linear RL techniques quickly converge to a near-optimal policy.
arXiv Detail & Related papers (2022-05-29T04:31:29Z) - Provable and Efficient Continual Representation Learning [40.78975699391065]
In continual learning (CL), the goal is to design models that can learn a sequence of tasks without catastrophic forgetting.
We study the problem of continual representation learning where we learn an evolving representation as new tasks arrive.
We show that CL benefits if the initial tasks have large sample size and high "representation diversity"
arXiv Detail & Related papers (2022-03-03T21:23:08Z) - Active Multi-Task Representation Learning [50.13453053304159]
We give the first formal study on resource task sampling by leveraging the techniques from active learning.
We propose an algorithm that iteratively estimates the relevance of each source task to the target task and samples from each source task based on the estimated relevance.
arXiv Detail & Related papers (2022-02-02T08:23:24Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z) - Efficient Reinforcement Learning in Resource Allocation Problems Through
Permutation Invariant Multi-task Learning [6.247939901619901]
We show that in certain settings, the available data can be dramatically increased through a form of multi-task learning.
We provide a theoretical performance bound for the gain in sample efficiency under this setting.
This motivates a new approach to multi-task learning, which involves the design of an appropriate neural network architecture and a prioritized task-sampling strategy.
arXiv Detail & Related papers (2021-02-18T14:13:02Z) - Understanding and Improving Information Transfer in Multi-Task Learning [14.43111978531182]
We study an architecture with a shared module for all tasks and a separate output module for each task.
We show that misalignment between task data can cause negative transfer (or hurt performance) and provide sufficient conditions for positive transfer.
Inspired by the theoretical insights, we show that aligning tasks' embedding layers leads to performance gains for multi-task training and transfer learning.
arXiv Detail & Related papers (2020-05-02T23:43:52Z) - Exploring and Predicting Transferability across NLP Tasks [115.6278033699853]
We study the transferability between 33 NLP tasks across three broad classes of problems.
Our results show that transfer learning is more beneficial than previously thought.
We also develop task embeddings that can be used to predict the most transferable source tasks for a given target task.
arXiv Detail & Related papers (2020-05-02T09:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.