Provable Benefits of Representational Transfer in Reinforcement Learning
- URL: http://arxiv.org/abs/2205.14571v1
- Date: Sun, 29 May 2022 04:31:29 GMT
- Title: Provable Benefits of Representational Transfer in Reinforcement Learning
- Authors: Alekh Agarwal, Yuda Song, Wen Sun, Kaiwen Wang, Mengdi Wang, Xuezhou
Zhang
- Abstract summary: We study the problem of representational transfer in RL, where an agent first pretrains in a number of source tasks to discover a shared representation.
We show that given generative access to source tasks, we can discover a representation, using which subsequent linear RL techniques quickly converge to a near-optimal policy.
- Score: 59.712501044999875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of representational transfer in RL, where an agent first
pretrains in a number of source tasks to discover a shared representation,
which is subsequently used to learn a good policy in a target task. We propose
a new notion of task relatedness between source and target tasks, and develop a
novel approach for representational transfer under this assumption. Concretely,
we show that given generative access to source tasks, we can discover a
representation, using which subsequent linear RL techniques quickly converge to
a near-optimal policy, with only online access to the target task.
The sample complexity is close to knowing the ground truth features in the
target task, and comparable to prior representation learning results in the
source tasks. We complement our positive results with lower bounds without
generative access, and validate our findings with empirical evaluation on rich
observation MDPs that require deep exploration.
Related papers
- Offline Multi-task Transfer RL with Representational Penalization [26.114893629771736]
We study the problem of representation transfer in offline Reinforcement Learning (RL)
We propose an algorithm to compute pointwise uncertainty measures for the learnt representation.
arXiv Detail & Related papers (2024-02-19T21:52:44Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Provable Benefit of Multitask Representation Learning in Reinforcement
Learning [46.11628795660159]
This paper theoretically characterizes the benefit of representation learning under the low-rank Markov decision process (MDP) model.
To the best of our knowledge, this is the first theoretical study that characterizes the benefit of representation learning in exploration-based reward-free multitask reinforcement learning.
arXiv Detail & Related papers (2022-06-13T04:29:02Z) - Active Multi-Task Representation Learning [50.13453053304159]
We give the first formal study on resource task sampling by leveraging the techniques from active learning.
We propose an algorithm that iteratively estimates the relevance of each source task to the target task and samples from each source task based on the estimated relevance.
arXiv Detail & Related papers (2022-02-02T08:23:24Z) - Reinforcement Learning with Prototypical Representations [114.35801511501639]
Proto-RL is a self-supervised framework that ties representation learning with exploration through prototypical representations.
These prototypes simultaneously serve as a summarization of the exploratory experience of an agent as well as a basis for representing observations.
This enables state-of-the-art downstream policy learning on a set of difficult continuous control tasks.
arXiv Detail & Related papers (2021-02-22T18:56:34Z) - Sequential Transfer in Reinforcement Learning with a Generative Model [48.40219742217783]
We show how to reduce the sample complexity for learning new tasks by transferring knowledge from previously-solved ones.
We derive PAC bounds on its sample complexity which clearly demonstrate the benefits of using this kind of prior knowledge.
We empirically verify our theoretical findings in simple simulated domains.
arXiv Detail & Related papers (2020-07-01T19:53:35Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.