Better Fair than Sorry: Adversarial Missing Data Imputation for Fair
GNNs
- URL: http://arxiv.org/abs/2311.01591v2
- Date: Thu, 15 Feb 2024 17:48:33 GMT
- Title: Better Fair than Sorry: Adversarial Missing Data Imputation for Fair
GNNs
- Authors: Debolina Halder Lina and Arlei Silva
- Abstract summary: This paper addresses the problem of learning fair Graph Neural Networks (GNNs) under missing protected attributes.
We propose Better Fair than Sorry (BFtS), a fair missing data imputation model for protected attributes used by fair GNNs.
- Score: 6.680930089714339
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the problem of learning fair Graph Neural Networks
(GNNs) under missing protected attributes. GNNs have achieved state-of-the-art
results in many relevant tasks where decisions might disproportionately impact
specific communities. However, existing work on fair GNNs assumes that either
protected attributes are fully-observed or that the missing data imputation is
fair. In practice, biases in the imputation will be propagated to the model
outcomes, leading them to overestimate the fairness of their predictions. We
address this challenge by proposing Better Fair than Sorry (BFtS), a fair
missing data imputation model for protected attributes used by fair GNNs. The
key design principle behind BFtS is that imputations should approximate the
worst-case scenario for the fair GNN -- i.e. when optimizing fairness is the
hardest. We implement this idea using a 3-player adversarial scheme where two
adversaries collaborate against the fair GNN. Experiments using synthetic and
real datasets show that BFtS often achieves a better fairness $\times$ accuracy
trade-off than existing alternatives.
Related papers
- Are Your Models Still Fair? Fairness Attacks on Graph Neural Networks via Node Injections [28.86365261170078]
Research has revealed the fairness vulnerabilities in Graph Neural Networks (GNNs) when facing malicious adversarial attacks.
We introduce a Node Injection-based Fairness Attack (NIFA) exploring the vulnerabilities of GNN fairness in such a more realistic setting.
NIFA can significantly undermine the fairness of mainstream GNNs, even including fairness-aware GNNs, by injecting merely 1% of nodes.
arXiv Detail & Related papers (2024-06-05T08:26:53Z) - The Devil is in the Data: Learning Fair Graph Neural Networks via
Partial Knowledge Distillation [35.17007613884196]
Graph neural networks (GNNs) are being increasingly used in many high-stakes tasks.
GNNs have been shown to be unfair as they tend to make discriminatory decisions toward certain demographic groups.
We present a demographic-agnostic method to learn fair GNNs via knowledge distillation, namely FairGKD.
arXiv Detail & Related papers (2023-11-29T05:54:58Z) - ELEGANT: Certified Defense on the Fairness of Graph Neural Networks [94.10433608311604]
Graph Neural Networks (GNNs) have emerged as a prominent graph learning model in various graph-based tasks.
malicious attackers could easily corrupt the fairness level of their predictions by adding perturbations to the input graph data.
We propose a principled framework named ELEGANT to study a novel problem of certifiable defense on the fairness level of GNNs.
arXiv Detail & Related papers (2023-11-05T20:29:40Z) - Adversarial Attacks on Fairness of Graph Neural Networks [63.155299388146176]
Fairness-aware graph neural networks (GNNs) have gained a surge of attention as they can reduce the bias of predictions on any demographic group.
Although these methods greatly improve the algorithmic fairness of GNNs, the fairness can be easily corrupted by carefully designed adversarial attacks.
arXiv Detail & Related papers (2023-10-20T21:19:54Z) - Towards Fair Graph Neural Networks via Graph Counterfactual [38.721295940809135]
Graph neural networks (GNNs) have shown great ability in representation (GNNs) learning on graphs, facilitating various tasks.
Recent works show that GNNs tend to inherit and amplify the bias from training data, causing concerns of the adoption of GNNs in high-stake scenarios.
We propose a novel framework CAF, which can select counterfactuals from training data to avoid non-realistic counterfactuals.
arXiv Detail & Related papers (2023-07-10T23:28:03Z) - Fairness-Aware Graph Neural Networks: A Survey [53.41838868516936]
Graph Neural Networks (GNNs) have become increasingly important due to their representational power and state-of-the-art predictive performance.
GNNs suffer from fairness issues that arise as a result of the underlying graph data and the fundamental aggregation mechanism.
In this article, we examine and categorize fairness techniques for improving the fairness of GNNs.
arXiv Detail & Related papers (2023-07-08T08:09:06Z) - A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy,
Robustness, Fairness, and Explainability [59.80140875337769]
Graph Neural Networks (GNNs) have made rapid developments in the recent years.
GNNs can leak private information, are vulnerable to adversarial attacks, can inherit and magnify societal bias from training data.
This paper gives a comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability.
arXiv Detail & Related papers (2022-04-18T21:41:07Z) - Shift-Robust GNNs: Overcoming the Limitations of Localized Graph
Training data [52.771780951404565]
Shift-Robust GNN (SR-GNN) is designed to account for distributional differences between biased training data and the graph's true inference distribution.
We show that SR-GNN outperforms other GNN baselines by accuracy, eliminating at least (40%) of the negative effects introduced by biased training data.
arXiv Detail & Related papers (2021-08-02T18:00:38Z) - Fairness Through Robustness: Investigating Robustness Disparity in Deep
Learning [61.93730166203915]
We argue that traditional notions of fairness are not sufficient when the model is vulnerable to adversarial attacks.
We show that measuring robustness bias is a challenging task for DNNs and propose two methods to measure this form of bias.
arXiv Detail & Related papers (2020-06-17T22:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.