Maximum Likelihood Estimation of Flexible Survival Densities with
Importance Sampling
- URL: http://arxiv.org/abs/2311.01660v1
- Date: Fri, 3 Nov 2023 01:46:48 GMT
- Title: Maximum Likelihood Estimation of Flexible Survival Densities with
Importance Sampling
- Authors: Mert Ketenci and Shreyas Bhave and No\'emie Elhadad and Adler Perotte
- Abstract summary: Survival analysis is a widely-used technique for analyzing time-to-event data in the presence of censoring.
We propose a survival analysis approach which eliminates the need to tune hyper parameters.
We show that the proposed approach matches or outperforms baselines on several real-world datasets.
- Score: 3.4082496470541312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Survival analysis is a widely-used technique for analyzing time-to-event data
in the presence of censoring. In recent years, numerous survival analysis
methods have emerged which scale to large datasets and relax traditional
assumptions such as proportional hazards. These models, while being performant,
are very sensitive to model hyperparameters including: (1) number of bins and
bin size for discrete models and (2) number of cluster assignments for
mixture-based models. Each of these choices requires extensive tuning by
practitioners to achieve optimal performance. In addition, we demonstrate in
empirical studies that: (1) optimal bin size may drastically differ based on
the metric of interest (e.g., concordance vs brier score), and (2) mixture
models may suffer from mode collapse and numerical instability. We propose a
survival analysis approach which eliminates the need to tune hyperparameters
such as mixture assignments and bin sizes, reducing the burden on
practitioners. We show that the proposed approach matches or outperforms
baselines on several real-world datasets.
Related papers
- Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Composite Survival Analysis: Learning with Auxiliary Aggregated
Baselines and Survival Scores [0.0]
Survival Analysis (SA) constitutes the default method for time-to-event modeling.
We show how to improve the training and inference of SA models by decoupling their full expression into (1) an aggregated baseline hazard, which captures the overall behavior of a given population, and (2) independently distributed survival scores, which model idiosyncratic probabilistic dynamics of its given members, in a fully parametric setting.
arXiv Detail & Related papers (2023-12-10T11:13:22Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
We aim at improving data efficiency for both classification and regression setups in deep learning.
To take the power of both worlds, we propose a novel X-model.
X-model plays a minimax game between the feature extractor and task-specific heads.
arXiv Detail & Related papers (2021-10-09T13:56:48Z) - Model-based micro-data reinforcement learning: what are the crucial
model properties and which model to choose? [0.2836066255205732]
We contribute to micro-data model-based reinforcement learning (MBRL) by rigorously comparing popular generative models.
We find that on an environment that requires multimodal posterior predictives, mixture density nets outperform all other models by a large margin.
We also found that deterministic models are on par, in fact they consistently (although non-significantly) outperform their probabilistic counterparts.
arXiv Detail & Related papers (2021-07-24T11:38:25Z) - Deep Cox Mixtures for Survival Regression [11.64579638651557]
We describe a new approach for survival analysis regression models, based on learning mixtures of Cox regressions to model individual survival distributions.
We perform experiments on multiple real world datasets, and look at the mortality rates of patients across ethnicity and gender.
arXiv Detail & Related papers (2021-01-16T22:41:22Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - Two-step penalised logistic regression for multi-omic data with an
application to cardiometabolic syndrome [62.997667081978825]
We implement a two-step approach to multi-omic logistic regression in which variable selection is performed on each layer separately.
Our approach should be preferred if the goal is to select as many relevant predictors as possible.
Our proposed approach allows us to identify features that characterise cardiometabolic syndrome at the molecular level.
arXiv Detail & Related papers (2020-08-01T10:36:27Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.