Amortized Bayesian model comparison with evidential deep learning
- URL: http://arxiv.org/abs/2004.10629v4
- Date: Tue, 2 Mar 2021 09:20:49 GMT
- Title: Amortized Bayesian model comparison with evidential deep learning
- Authors: Stefan T. Radev, Marco D'Alessandro, Ulf K. Mertens, Andreas Voss,
Ullrich K\"othe, Paul-Christian B\"urkner
- Abstract summary: We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
- Score: 0.12314765641075436
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Comparing competing mathematical models of complex natural processes is a
shared goal among many branches of science. The Bayesian probabilistic
framework offers a principled way to perform model comparison and extract
useful metrics for guiding decisions. However, many interesting models are
intractable with standard Bayesian methods, as they lack a closed-form
likelihood function or the likelihood is computationally too expensive to
evaluate. With this work, we propose a novel method for performing Bayesian
model comparison using specialized deep learning architectures. Our method is
purely simulation-based and circumvents the step of explicitly fitting all
alternative models under consideration to each observed dataset. Moreover, it
requires no hand-crafted summary statistics of the data and is designed to
amortize the cost of simulation over multiple models and observable datasets.
This makes the method particularly effective in scenarios where model fit needs
to be assessed for a large number of datasets, so that per-dataset inference is
practically infeasible.Finally, we propose a novel way to measure epistemic
uncertainty in model comparison problems. We demonstrate the utility of our
method on toy examples and simulated data from non-trivial models from
cognitive science and single-cell neuroscience. We show that our method
achieves excellent results in terms of accuracy, calibration, and efficiency
across the examples considered in this work. We argue that our framework can
enhance and enrich model-based analysis and inference in many fields dealing
with computational models of natural processes. We further argue that the
proposed measure of epistemic uncertainty provides a unique proxy to quantify
absolute evidence even in a framework which assumes that the true
data-generating model is within a finite set of candidate models.
Related papers
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Comparing Foundation Models using Data Kernels [13.099029073152257]
We present a methodology for directly comparing the embedding space geometry of foundation models.
Our methodology is grounded in random graph theory and enables valid hypothesis testing of embedding similarity.
We show how our framework can induce a manifold of models equipped with a distance function that correlates strongly with several downstream metrics.
arXiv Detail & Related papers (2023-05-09T02:01:07Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Model Comparison in Approximate Bayesian Computation [0.456877715768796]
A common problem in natural sciences is the comparison of competing models in the light of observed data.
This framework relies on the calculation of likelihood functions which are intractable for most models used in practice.
I propose a new efficient method to perform Bayesian model comparison in ABC.
arXiv Detail & Related papers (2022-03-15T10:24:16Z) - Distributional Depth-Based Estimation of Object Articulation Models [21.046351215949525]
We propose a method that efficiently learns distributions over articulation model parameters directly from depth images.
Our core contributions include a novel representation for distributions over rigid body transformations.
We introduce a novel deep learning based approach, DUST-net, that performs category-independent articulation model estimation.
arXiv Detail & Related papers (2021-08-12T17:44:51Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - On Statistical Efficiency in Learning [37.08000833961712]
We address the challenge of model selection to strike a balance between model fitting and model complexity.
We propose an online algorithm that sequentially expands the model complexity to enhance selection stability and reduce cost.
Experimental studies show that the proposed method has desirable predictive power and significantly less computational cost than some popular methods.
arXiv Detail & Related papers (2020-12-24T16:08:29Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.