論文の概要: Sculpting Holistic 3D Representation in Contrastive Language-Image-3D Pre-training
- arxiv url: http://arxiv.org/abs/2311.01734v2
- Date: Fri, 5 Apr 2024 10:11:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 20:40:00.633665
- Title: Sculpting Holistic 3D Representation in Contrastive Language-Image-3D Pre-training
- Title(参考訳): コントラスト言語におけるホロスティックな3次元表現の抽出-画像3次元事前学習
- Authors: Yipeng Gao, Zeyu Wang, Wei-Shi Zheng, Cihang Xie, Yuyin Zhou,
- Abstract要約: コントラスト型言語画像3D事前学習において, ホロリスティックな3D表現を彫刻するMixCon3Dを提案する。
相補的な視点から3次元オブジェクトレベルの表現を開発する。
次に、MixCon3Dは言語3Dのコントラスト学習を行い、現実世界の3Dオブジェクトを包括的に表現し、テキストアライメントを強化する。
- 参考スコア(独自算出の注目度): 51.632418297156605
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Contrastive learning has emerged as a promising paradigm for 3D open-world understanding, i.e., aligning point cloud representation to image and text embedding space individually. In this paper, we introduce MixCon3D, a simple yet effective method aiming to sculpt holistic 3D representation in contrastive language-image-3D pre-training. In contrast to point cloud only, we develop the 3D object-level representation from complementary perspectives, e.g., multi-view rendered images with the point cloud. Then, MixCon3D performs language-3D contrastive learning, comprehensively depicting real-world 3D objects and bolstering text alignment. Additionally, we pioneer the first thorough investigation of various training recipes for the 3D contrastive learning paradigm, building a solid baseline with improved performance. Extensive experiments conducted on three representative benchmarks reveal that our method significantly improves over the baseline, surpassing the previous state-of-the-art performance on the challenging 1,156-category Objaverse-LVIS dataset by 5.7%. The versatility of MixCon3D is showcased in applications such as text-to-3D retrieval and point cloud captioning, further evidencing its efficacy in diverse scenarios. The code is available at https://github.com/UCSC-VLAA/MixCon3D.
- Abstract(参考訳): コントラスト学習は3次元オープンワールド理解のための有望なパラダイムとして登場し、ポイントクラウド表現を画像とテキストの埋め込み空間に個別に整合させる。
本論文では,コントラスト型言語画像3D事前学習における全体像表現の表現を目的とした,シンプルで効果的なMixCon3Dを提案する。
点クラウドのみとは対照的に、相補的な視点、例えば、点クラウドを用いた多視点レンダリング画像から、3次元オブジェクトレベルの表現を開発する。
次に、MixCon3Dは言語3Dのコントラスト学習を行い、現実世界の3Dオブジェクトを包括的に表現し、テキストアライメントを強化する。
さらに,3次元コントラスト学習パラダイムのための各種学習レシピを徹底的に研究し,性能の向上を図った。
3つの代表的なベンチマークで行った大規模な実験により,提案手法はベースラインよりも大幅に改善され,挑戦的な1,156カテゴリのObjaverse-LVISデータセットを5.7%上回った。
MixCon3Dの汎用性は、テキストから3Dの検索やポイントクラウドキャプションといったアプリケーションで示されており、さまざまなシナリオにおいてその有効性を証明している。
コードはhttps://github.com/UCSC-VLAA/MixCon3Dで公開されている。
関連論文リスト
- SeMv-3D: Towards Semantic and Mutil-view Consistency simultaneously for General Text-to-3D Generation with Triplane Priors [115.66850201977887]
汎用テキストから3d生成のための新しいフレームワークであるSeMv-3Dを提案する。
3次元の空間的特徴を持つ3次元平面先行学習を学習し、3次元の異なる視点間の整合性を維持する三次元平面先行学習器を提案する。
また,3次元空間特徴とテキスト・セマンティクスとの整合性を保持するセマンティック・アラインメント・ビュー・シンセサイザーを設計する。
論文 参考訳(メタデータ) (2024-10-10T07:02:06Z) - Weakly-Supervised 3D Visual Grounding based on Visual Linguistic Alignment [26.858034573776198]
視覚言語アライメントに基づく3次元視覚接地のための弱教師付きアプローチを提案する。
我々の3D-VLAは、テキストと2D画像のセマンティクスの整合性において、現在の大規模視覚言語モデルの優れた能力を利用する。
推論段階では、学習したテキスト3D対応は、2D画像がなくてもテキストクエリを3D対象オブジェクトにグラウンド化するのに役立ちます。
論文 参考訳(メタデータ) (2023-12-15T09:08:14Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
本稿では,効率的な3D表現の獲得を容易にするために,新しいユニバーサル3D事前学習フレームワークを提案する。
PonderV2は、11の室内および屋外ベンチマークで最先端のパフォーマンスを達成したことで、その効果が示唆された。
論文 参考訳(メタデータ) (2023-10-12T17:59:57Z) - Multi-CLIP: Contrastive Vision-Language Pre-training for Question
Answering tasks in 3D Scenes [68.61199623705096]
一般的な言語知識と視覚概念を2次元画像から3次元シーン理解に適用するためのトレーニングモデルは、研究者が最近探求を始めたばかりの有望な方向である。
そこで本研究では,モデルによる3次元シーンポイントクラウド表現の学習を可能にする,新しい3次元事前学習手法であるMulti-CLIPを提案する。
論文 参考訳(メタデータ) (2023-06-04T11:08:53Z) - CLIP-Guided Vision-Language Pre-training for Question Answering in 3D
Scenes [68.61199623705096]
我々は,モデルが意味論的かつ伝達可能な3Dシーンポイントクラウド表現を学習するのに役立つ,新しい3D事前学習型ビジョンランゲージを設計する。
符号化された3Dシーン特徴と対応する2D画像とテキスト埋め込みとを一致させることにより、人気のあるCLIPモデルの表現力を3Dエンコーダに注入する。
我々は,3次元視覚質問応答の下流課題に対して,我々のモデルによる3次元世界推論能力を評価する。
論文 参考訳(メタデータ) (2023-04-12T16:52:29Z) - CLIP$^2$: Contrastive Language-Image-Point Pretraining from Real-World
Point Cloud Data [80.42480679542697]
現実シナリオにおける3Dポイントクラウド表現の伝達を学習するために,Contrastive Language-Image-Point Cloud Pretraining (CLIP$2$)を提案する。
具体的には、2Dおよび3Dシナリオで自然に存在する対応を利用して、それらの複雑なシナリオから、適切に整列されたインスタンスベースのテキストイメージポイントプロキシを構築します。
論文 参考訳(メタデータ) (2023-03-22T09:32:45Z) - Joint Representation Learning for Text and 3D Point Cloud [35.67281936143821]
言語誘導型3Dポイントクラウドモデルを構築するための新しいText4Pointフレームワークを提案する。
提案されたText4Pointは、事前トレーニングと微調整のパラダイムに従っている。
我々のモデルは、ポイントクラウドセマンティックセグメンテーション、インスタンスセグメンテーション、オブジェクト検出など、さまざまなダウンストリームタスクにおいて一貫した改善を示す。
論文 参考訳(メタデータ) (2023-01-18T15:02:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。