A Quantitative Autonomy Quantification Framework for Fully Autonomous Robotic Systems
- URL: http://arxiv.org/abs/2311.01939v2
- Date: Wed, 10 Apr 2024 20:04:59 GMT
- Title: A Quantitative Autonomy Quantification Framework for Fully Autonomous Robotic Systems
- Authors: Nasser Gyagenda, Hubert Roth,
- Abstract summary: This paper focuses on the full autonomous mode and proposes a quantitative autonomy assessment framework based on task requirements.
The framework provides not only a tool for quantifying autonomy, but also a regulatory interface and common language for autonomous systems developers and users.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although autonomous functioning facilitates deployment of robotic systems in domains that admit limited human oversight on our planet and beyond, finding correspondence between task requirements and autonomous capability is still an open challenge. Consequently, a number of methods for quantifying autonomy have been proposed over the last three decades, but to our knowledge all these have no discernment of sub-mode features of variation of autonomy and some are based on metrics that violet the Goodhart's law. This paper focuses on the full autonomous mode and proposes a quantitative autonomy assessment framework based on task requirements. The framework starts by establishing robot task characteristics from which three autonomy metrics, namely requisite capability set, reliability and responsiveness are derived. These characteristics were founded on the realization that robots ultimately replace human skilled workers, from which a relationship between human job and robot task characteristics was established. Additionally, mathematical functions mapping metrics to autonomy as a two-part measure, namely of level and degree of autonomy are also presented. The distinction between level and degree of autonomy stemmed from the acknowledgment that autonomy is not just a question of existence, but also one of performance of requisite capability. The framework has been demonstrated on two case studies, namely autonomous vehicle at an on-road dynamic driving task and the DARPA subterranean challenge rules analysis. The framework provides not only a tool for quantifying autonomy, but also a regulatory interface and common language for autonomous systems developers and users. Its greatest feature is the ability to monitor system integrity when implemented online.
Related papers
- A Measure for Level of Autonomy Based on Observable System Behavior [0.0]
We present a potential measure for predicting level of autonomy using observable actions.
We also present an algorithm incorporating the proposed measure.
The measure and algorithm have significance to researchers and practitioners interested in a method to blind compare autonomous systems at runtime.
arXiv Detail & Related papers (2024-07-20T20:34:20Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
We propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving.
Our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one.
arXiv Detail & Related papers (2024-07-09T04:56:11Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Assurance for Autonomy -- JPL's past research, lessons learned, and
future directions [56.32768279109502]
Autonomy is required when a wide variation in circumstances precludes responses being pre-planned.
Mission assurance is a key contributor to providing confidence, yet assurance practices honed over decades of spaceflight have relatively little experience with autonomy.
Researchers in JPL's software assurance group have been involved in the development of techniques specific to the assurance of autonomy.
arXiv Detail & Related papers (2023-05-16T18:24:12Z) - Planning-oriented Autonomous Driving [60.93767791255728]
We argue that a favorable framework should be devised and optimized in pursuit of the ultimate goal, i.e., planning of the self-driving car.
We introduce Unified Autonomous Driving (UniAD), a comprehensive framework that incorporates full-stack driving tasks in one network.
arXiv Detail & Related papers (2022-12-20T10:47:53Z) - Human Autonomy as a Design Principle for Socially Assistive Robots [0.0]
We propose that human autonomy needs to be at the center of the design for socially assistive robots.
As an example of a design effort, we describe some of the features of our Assist architecture.
arXiv Detail & Related papers (2022-11-12T21:27:43Z) - A Capability and Skill Model for Heterogeneous Autonomous Robots [69.50862982117127]
capability modeling is considered a promising approach to semantically model functions provided by different machines.
This contribution investigates how to apply and extend capability models from manufacturing to the field of autonomous robots.
arXiv Detail & Related papers (2022-09-22T10:13:55Z) - The Need for a Meta-Architecture for Robot Autonomy [0.0]
Long-term autonomy of robotic systems implicitly requires platforms that are able to handle faults, problems in behaviors, or lack of knowledge.
We put forward the case for a generative model of cognitive architectures for autonomous robotic agents that subscribes to the principles of model-based engineering and certifiable dependability.
arXiv Detail & Related papers (2022-07-20T07:27:23Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
Intrinsic motivations have proven to generate a task-agnostic signal to properly allocate the training time amongst goals.
While the majority of works in the field of intrinsically motivated open-ended learning focus on scenarios where goals are independent from each other, only few of them studied the autonomous acquisition of interdependent tasks.
In particular, we first deepen the analysis of a previous system, showing the importance of incorporating information about the relationships between tasks at a higher level of the architecture.
Then we introduce H-GRAIL, a new system that extends the previous one by adding a new learning layer to store the autonomously acquired sequences
arXiv Detail & Related papers (2022-05-16T10:43:01Z) - Learning to Optimize Autonomy in Competence-Aware Systems [32.3596917475882]
We propose an introspective model of autonomy that is learned and updated online through experience.
We define a competence-aware system (CAS) that explicitly models its own proficiency at different levels of autonomy and the available human feedback.
We analyze the convergence properties of CAS and provide experimental results for robot delivery and autonomous driving domains.
arXiv Detail & Related papers (2020-03-17T14:31:45Z) - Towards a Framework for Certification of Reliable Autonomous Systems [3.3861948721202233]
A computational system is autonomous if it is able to make its own decisions, or take its own actions, without human supervision or control.
Regulators grapple with how to deal with autonomous systems, for example how could we certify an Unmanned Aerial System for autonomous use in civilian airspace?
We here analyse what is needed in order to provide verified reliable behaviour of an autonomous system.
We propose a roadmap towards developing regulatory guidelines, including articulating challenges to researchers, to engineers, and to regulators.
arXiv Detail & Related papers (2020-01-24T18:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.