The Need for a Meta-Architecture for Robot Autonomy
- URL: http://arxiv.org/abs/2207.09712v1
- Date: Wed, 20 Jul 2022 07:27:23 GMT
- Title: The Need for a Meta-Architecture for Robot Autonomy
- Authors: Stalin Mu\~noz Guti\'errez (1), Gerald Steinbauer-Wagner (1) ((1)
Autonomous Intelligent Systems Group. Institute of Software Technology. Graz
University of Technology. Austria.)
- Abstract summary: Long-term autonomy of robotic systems implicitly requires platforms that are able to handle faults, problems in behaviors, or lack of knowledge.
We put forward the case for a generative model of cognitive architectures for autonomous robotic agents that subscribes to the principles of model-based engineering and certifiable dependability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-term autonomy of robotic systems implicitly requires dependable
platforms that are able to naturally handle hardware and software faults,
problems in behaviors, or lack of knowledge. Model-based dependable platforms
additionally require the application of rigorous methodologies during the
system development, including the use of correct-by-construction techniques to
implement robot behaviors. As the level of autonomy in robots increases, so do
the cost of offering guarantees about the dependability of the system.
Certifiable dependability of autonomous robots, we argue, can benefit from
formal models of the integration of several cognitive functions, knowledge
processing, reasoning, and meta-reasoning. Here we put forward the case for a
generative model of cognitive architectures for autonomous robotic agents that
subscribes to the principles of model-based engineering and certifiable
dependability, autonomic computing, and knowledge-enabled robotics.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis [82.59451639072073]
General-purpose robots operate seamlessly in any environment, with any object, and utilize various skills to complete diverse tasks.
As a community, we have been constraining most robotic systems by designing them for specific tasks, training them on specific datasets, and deploying them within specific environments.
Motivated by the impressive open-set performance and content generation capabilities of web-scale, large-capacity pre-trained models, we devote this survey to exploring how foundation models can be applied to general-purpose robotics.
arXiv Detail & Related papers (2023-12-14T10:02:55Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - Online Learning and Planning in Cognitive Hierarchies [10.28577981317938]
We extend an existing formal framework to model complex integrated reasoning behaviours of robotic systems.
New framework allows for a more flexible modelling of the interactions between different reasoning components.
arXiv Detail & Related papers (2023-10-18T23:53:51Z) - A Capability and Skill Model for Heterogeneous Autonomous Robots [69.50862982117127]
capability modeling is considered a promising approach to semantically model functions provided by different machines.
This contribution investigates how to apply and extend capability models from manufacturing to the field of autonomous robots.
arXiv Detail & Related papers (2022-09-22T10:13:55Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
Article argues that embodied intelligence is a key driver for the advancement of machine learning technology.
We highlight challenges and opportunities specific to embodied intelligence.
We propose research directions which may significantly advance the state-of-the-art in robot learning.
arXiv Detail & Related papers (2021-10-28T16:04:01Z) - Behavior coordination for self-adaptive robots using constraint-based
configuration [0.0]
This paper presents an original algorithm to dynamically configure the control architecture of self-adaptive robots.
The algorithm uses a constraint-based configuration approach to decide which basic robot behaviors should be activated in response to both reactive and deliberative events.
The solution has been implemented as a software development tool called Behavior Coordinator CBC, which is based on ROS and open source.
arXiv Detail & Related papers (2021-03-24T12:09:44Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - Towards open and expandable cognitive AI architectures for large-scale
multi-agent human-robot collaborative learning [5.478764356647437]
A novel cognitive architecture for multi-agent LfD robotic learning is introduced, targeting to enable the reliable deployment of open, scalable and expandable robotic systems.
The conceptualization relies on employing multiple AI-empowered cognitive processes that operate at the edge nodes of a network of robotic platforms.
The applicability of the proposed framework is explained using an example of a real-world industrial case study.
arXiv Detail & Related papers (2020-12-15T09:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.