Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point
Clouds of Wild Scenes
- URL: http://arxiv.org/abs/2004.12498v2
- Date: Sun, 17 May 2020 21:14:07 GMT
- Title: Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point
Clouds of Wild Scenes
- Authors: Haiyan Wang, Xuejian Rong, Liang Yang, Jinglun Feng, Jizhong Xiao,
Yingli Tian
- Abstract summary: The deficiency of 3D segmentation labels is one of the main obstacles to effective point cloud segmentation.
We propose a novel deep graph convolutional network-based framework for large-scale semantic scene segmentation in point clouds with sole 2D supervision.
- Score: 36.07733308424772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deficiency of 3D segmentation labels is one of the main obstacles to
effective point cloud segmentation, especially for scenes in the wild with
varieties of different objects. To alleviate this issue, we propose a novel
deep graph convolutional network-based framework for large-scale semantic scene
segmentation in point clouds with sole 2D supervision. Different with numerous
preceding multi-view supervised approaches focusing on single object point
clouds, we argue that 2D supervision is capable of providing sufficient
guidance information for training 3D semantic segmentation models of natural
scene point clouds while not explicitly capturing their inherent structures,
even with only single view per training sample. Specifically, a Graph-based
Pyramid Feature Network (GPFN) is designed to implicitly infer both global and
local features of point sets and an Observability Network (OBSNet) is
introduced to further solve object occlusion problem caused by complicated
spatial relations of objects in 3D scenes. During the projection process,
perspective rendering and semantic fusion modules are proposed to provide
refined 2D supervision signals for training along with a 2D-3D joint
optimization strategy. Extensive experimental results demonstrate the
effectiveness of our 2D supervised framework, which achieves comparable results
with the state-of-the-art approaches trained with full 3D labels, for semantic
point cloud segmentation on the popular SUNCG synthetic dataset and S3DIS
real-world dataset.
Related papers
- Dynamic 3D Point Cloud Sequences as 2D Videos [81.46246338686478]
3D point cloud sequences serve as one of the most common and practical representation modalities of real-world environments.
We propose a novel generic representation called textitStructured Point Cloud Videos (SPCVs)
SPCVs re-organizes a point cloud sequence as a 2D video with spatial smoothness and temporal consistency, where the pixel values correspond to the 3D coordinates of points.
arXiv Detail & Related papers (2024-03-02T08:18:57Z) - U3DS$^3$: Unsupervised 3D Semantic Scene Segmentation [19.706172244951116]
This paper presents U3DS$3$, as a step towards completely unsupervised point cloud segmentation for any holistic 3D scenes.
The initial step of our proposed approach involves generating superpoints based on the geometric characteristics of each scene.
We then undergo a learning process through a spatial clustering-based methodology, followed by iterative training using pseudo-labels generated in accordance with the cluster centroids.
arXiv Detail & Related papers (2023-11-10T12:05:35Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
We propose a novel DAT (textbfDual textbfAdaptive textbfTransformations) model for weakly supervised point cloud segmentation.
We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets.
arXiv Detail & Related papers (2022-07-19T05:43:14Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - S3CNet: A Sparse Semantic Scene Completion Network for LiDAR Point
Clouds [0.16799377888527683]
We present S3CNet, a sparse convolution based neural network that predicts the semantically completed scene from a single, unified LiDAR point cloud.
We show that our proposed method outperforms all counterparts on the 3D task, achieving state-of-the art results on the Semantic KITTI benchmark.
arXiv Detail & Related papers (2020-12-16T20:14:41Z) - Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene
Understanding [19.134536179555102]
We propose an alternative approach to overcome the limitations of CNN based approaches by encoding the spatial features of raw 3D point clouds into undirected graph models.
The proposed method achieves on par state-of-the-art accuracy with improved training time and model stability thus indicating strong potential for further research.
arXiv Detail & Related papers (2020-11-29T12:56:19Z) - Pointwise Attention-Based Atrous Convolutional Neural Networks [15.499267533387039]
A pointwise attention-based atrous convolutional neural network architecture is proposed to efficiently deal with a large number of points.
The proposed model has been evaluated on the two most important 3D point cloud datasets for the 3D semantic segmentation task.
It achieves a reasonable performance compared to state-of-the-art models in terms of accuracy, with a much smaller number of parameters.
arXiv Detail & Related papers (2019-12-27T13:12:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.