Perturbation-based Active Learning for Question Answering
- URL: http://arxiv.org/abs/2311.02345v1
- Date: Sat, 4 Nov 2023 08:07:23 GMT
- Title: Perturbation-based Active Learning for Question Answering
- Authors: Fan Luo, Mihai Surdeanu
- Abstract summary: Building a question answering (QA) model with less annotation costs can be achieved by utilizing active learning (AL) training strategy.
It selects the most informative unlabeled training data to update the model effectively.
- Score: 25.379528163789082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building a question answering (QA) model with less annotation costs can be
achieved by utilizing active learning (AL) training strategy. It selects the
most informative unlabeled training data to update the model effectively.
Acquisition functions for AL are used to determine how informative each
training example is, such as uncertainty or diversity based sampling. In this
work, we propose a perturbation-based active learning acquisition strategy and
demonstrate it is more effective than existing commonly used strategies.
Related papers
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [75.78948575957081]
Large language models (LLMs) usually rely on retrieval-augmented generation to exploit knowledge materials in an instant manner.
We propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases.
Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently.
arXiv Detail & Related papers (2024-11-22T08:21:03Z) - Unlearnable Algorithms for In-context Learning [36.895152458323764]
In this paper, we focus on efficient unlearning methods for the task adaptation phase of a pretrained large language model.
We observe that an LLM's ability to do in-context learning for task adaptation allows for efficient exact unlearning of task adaptation training data.
We propose a new holistic measure of unlearning cost which accounts for varying inference costs.
arXiv Detail & Related papers (2024-02-01T16:43:04Z) - Compute-Efficient Active Learning [0.0]
Active learning aims at reducing labeling costs by selecting the most informative samples from an unlabeled dataset.
Traditional active learning process often demands extensive computational resources, hindering scalability and efficiency.
We present a novel method designed to alleviate the computational burden associated with active learning on massive datasets.
arXiv Detail & Related papers (2024-01-15T12:32:07Z) - Learning to Rank for Active Learning via Multi-Task Bilevel Optimization [29.207101107965563]
We propose a novel approach for active learning, which aims to select batches of unlabeled instances through a learned surrogate model for data acquisition.
A key challenge in this approach is developing an acquisition function that generalizes well, as the history of data, which forms part of the utility function's input, grows over time.
arXiv Detail & Related papers (2023-10-25T22:50:09Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Frugal Reinforcement-based Active Learning [12.18340575383456]
We propose a novel active learning approach for label-efficient training.
The proposed method is iterative and aims at minimizing a constrained objective function that mixes diversity, representativity and uncertainty criteria.
We also introduce a novel weighting mechanism based on reinforcement learning, which adaptively balances these criteria at each training iteration.
arXiv Detail & Related papers (2022-12-09T14:17:45Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - Reinforced Meta Active Learning [11.913086438671357]
We present an online stream-based meta active learning method which learns on the fly an informativeness measure directly from the data.
The method is based on reinforcement learning and combines episodic policy search and a contextual bandits approach.
We demonstrate on several real datasets that this method learns to select training samples more efficiently than existing state-of-the-art methods.
arXiv Detail & Related papers (2022-03-09T08:36:54Z) - Mind Your Outliers! Investigating the Negative Impact of Outliers on
Active Learning for Visual Question Answering [71.15403434929915]
We show that across 5 models and 4 datasets on the task of visual question answering, a wide variety of active learning approaches fail to outperform random selection.
We identify the problem as collective outliers -- groups of examples that active learning methods prefer to acquire but models fail to learn.
We show that active learning sample efficiency increases significantly as the number of collective outliers in the active learning pool decreases.
arXiv Detail & Related papers (2021-07-06T00:52:11Z) - Semi-supervised Batch Active Learning via Bilevel Optimization [89.37476066973336]
We formulate our approach as a data summarization problem via bilevel optimization.
We show that our method is highly effective in keyword detection tasks in the regime when only few labeled samples are available.
arXiv Detail & Related papers (2020-10-19T16:53:24Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
We present a meta-reinforcement learning algorithm that is both efficient and extrapolates well when faced with out-of-distribution tasks at test time.
Our method is based on a simple insight: we recognize that dynamics models can be adapted efficiently and consistently with off-policy data.
arXiv Detail & Related papers (2020-06-12T13:34:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.