Forecasting Success of Computer Science Professors and Students Based on Their Academic and Personal Backgrounds
- URL: http://arxiv.org/abs/2311.02476v4
- Date: Sun, 4 Aug 2024 10:12:00 GMT
- Title: Forecasting Success of Computer Science Professors and Students Based on Their Academic and Personal Backgrounds
- Authors: Ghazal Kalhor, Behnam Bahrak,
- Abstract summary: We analyze the influence of students' previous universities on their chances of being accepted to prestigious North American universities.
Our findings demonstrate that the ranking of their prior universities is a significant factor in achieving their goals.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: After completing their undergraduate studies, many computer science (CS) students apply for competitive graduate programs in North America. Their long-term goal is often to be hired by one of the big five tech companies or to become a faculty member. Therefore, being aware of the role of admission criteria may help them choose the best path towards their goals. In this paper, we analyze the influence of students' previous universities on their chances of being accepted to prestigious North American universities and returning to academia as professors in the future. Our findings demonstrate that the ranking of their prior universities is a significant factor in achieving their goals. We then illustrate that there is a bias in the undergraduate institutions of students admitted to the top 25 computer science programs. Finally, we employ machine learning models to forecast the success of professors at these universities. We achieved an RMSE of 7.85 for this prediction task.
Related papers
- Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants [175.9723801486487]
We evaluate whether two AI assistants, GPT-3.5 and GPT-4, can adequately answer assessment questions.
GPT-4 answers an average of 65.8% of questions correctly, and can even produce the correct answer across at least one prompting strategy for 85.1% of questions.
Our results call for revising program-level assessment design in higher education in light of advances in generative AI.
arXiv Detail & Related papers (2024-08-07T12:11:49Z) - Improving On-Time Undergraduate Graduation Rate For Undergraduate Students Using Predictive Analytics [0.0]
The on-time graduation rate among universities in Puerto Rico is significantly lower than in the mainland United States.
This project aims to develop a predictive model that accurately detects students early in their academic pursuit at risk of not graduating on time.
arXiv Detail & Related papers (2024-05-02T22:33:42Z) - The Michigan Robotics Undergraduate Curriculum: Defining the Discipline
of Robotics for Equity and Excellence [6.279487567339418]
The Robotics Major at the University of Michigan was launched in the 2022-23 academic year.
This document provides our original curricular proposal for the Robotics Undergraduate Program at the University of Michigan.
arXiv Detail & Related papers (2023-08-14T02:53:20Z) - Insights into undergraduate pathways using course load analytics [5.2432156904895155]
We produce and evaluate the first machine-learned predictions of student course load ratings.
Students who maintain a semester load that is low as measured by credit hours but high as measured by CLA are more likely to leave their program of study.
arXiv Detail & Related papers (2022-12-20T03:28:41Z) - Exploring the Confounding Factors of Academic Career Success: An
Empirical Study with Deep Predictive Modeling [43.91066315776696]
We propose to explore the determinants of academic career success through an empirical and predictive modeling perspective.
We analyze the co-author network and find that potential scholars work closely with influential scholars early on and more closely as they grow.
We find that being a Fellow could not bring the improvements of citations and productivity growth.
arXiv Detail & Related papers (2022-11-19T08:16:21Z) - Disadvantaged students increase their academic performance through
collective intelligence exposure in emergency remote learning due to COVID 19 [105.54048699217668]
During the COVID-19 crisis, educational institutions worldwide shifted from face-to-face instruction to emergency remote teaching (ERT) modalities.
We analyzed data on 7,528 undergraduate students and found that cooperative and consensus dynamics among students in discussion forums positively affect their final GPA.
Using natural language processing, we show that first-year students with low academic performance during high school are exposed to more content-intensive posts in discussion forums.
arXiv Detail & Related papers (2022-03-10T20:23:38Z) - Using Machine Learning to Predict Engineering Technology Students'
Success with Computer Aided Design [50.591267188664666]
We show how data combined with machine learning techniques can predict how well a particular student will perform in a design task.
We found that our models using early design sequence actions are particularly valuable for prediction.
Further improvements to these models could lead to earlier predictions and thus provide students feedback sooner to enhance their learning.
arXiv Detail & Related papers (2021-08-12T20:24:54Z) - Interleaving Computational and Inferential Thinking: Data Science for
Undergraduates at Berkeley [81.01051375191828]
The undergraduate data science curriculum at the University of California, Berkeley is anchored in five new courses.
These courses emphasize computational thinking, inferential thinking, and working on real-world problems.
These courses have become some of the most popular on campus and have led to a surging interest in a new undergraduate major and minor program in data science.
arXiv Detail & Related papers (2021-02-13T22:51:24Z) - Using a Binary Classification Model to Predict the Likelihood of
Enrolment to the Undergraduate Program of a Philippine University [0.0]
This study covered an analysis of various characteristics of freshmen applicants affecting their admission status in a Philippine university.
A predictive model was developed using Logistic Regression to evaluate the probability that an admitted student will pursue to enroll in the Institution or not.
arXiv Detail & Related papers (2020-10-26T06:58:03Z) - Undergraduate Student Research With Low Faculty Cost [1.90365714903665]
Many programs aimed at introducing undergraduates to research are structured like graduate research programs.
We have started a pilot program in our department where a larger number of students work with a single faculty member.
Students report that they develop a better understanding of what research in Computer Science is.
arXiv Detail & Related papers (2020-03-10T23:54:09Z) - Graduate Employment Prediction with Bias [44.38256197478875]
Failure of landing a job for college students could cause serious social consequences such as drunkenness and suicide.
We develop a framework, i.e., MAYA, to predict students' employment status while considering biases.
arXiv Detail & Related papers (2019-12-27T07:30:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.