Uncertainty Quantification of Deep Learning for Spatiotemporal Data:
Challenges and Opportunities
- URL: http://arxiv.org/abs/2311.02485v1
- Date: Sat, 4 Nov 2023 19:11:25 GMT
- Title: Uncertainty Quantification of Deep Learning for Spatiotemporal Data:
Challenges and Opportunities
- Authors: Wenchong He and Zhe Jiang
- Abstract summary: Uncertainty (UQ) aims to estimate a deep learning model's confidence.
This paper provides a brief overview of UQ for deep learningtemporal data, including its unique challenges and existing methods.
- Score: 8.23890319871992
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advancement of GPS, remote sensing, and computational simulations,
large amounts of geospatial and spatiotemporal data are being collected at an
increasing speed. Such emerging spatiotemporal big data assets, together with
the recent progress of deep learning technologies, provide unique opportunities
to transform society. However, it is widely recognized that deep learning
sometimes makes unexpected and incorrect predictions with unwarranted
confidence, causing severe consequences in high-stake decision-making
applications (e.g., disaster management, medical diagnosis, autonomous
driving). Uncertainty quantification (UQ) aims to estimate a deep learning
model's confidence. This paper provides a brief overview of UQ of deep learning
for spatiotemporal data, including its unique challenges and existing methods.
We particularly focus on the importance of uncertainty sources. We identify
several future research directions for spatiotemporal data.
Related papers
- A probabilistic framework for learning non-intrusive corrections to long-time climate simulations from short-time training data [12.566163525039558]
We present a strategy for training neural network models to non-intrusively correct under-resolved long-time simulations of chaotic systems.
We demonstrate its ability to accurately predict the anisotropic statistics over time horizons more than 30 times longer than the data seen in training.
arXiv Detail & Related papers (2024-08-02T18:34:30Z) - Spatio-temporal Attention-based Hidden Physics-informed Neural Network for Remaining Useful Life Prediction [1.8554335256160261]
We introduce a Spatio-temporal Attention-based Hidden Physics-informed Neural Network (STA-HPINN) for predicting Remaining Useful Life (RUL)
The hidden physics-informed neural network is utilized to capture the dimension physics mechanisms that govern the evolution of RUL.
The approach is validated on a benchmark dataset, demonstrating exceptional performance when compared to cutting-edge methods.
arXiv Detail & Related papers (2024-05-20T21:10:18Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
We propose a method that integrates efficient and precise uncertainty quantification into a deep learning-based surrogate model.
Our method endows deep learning-based surrogate models with robust and efficient uncertainty quantification capabilities for both forward and inverse problems.
Our method excels at propagating uncertainty over extended auto-regressive rollouts, making it suitable for scenarios involving long-term predictions.
arXiv Detail & Related papers (2024-02-13T11:22:59Z) - Deep Learning for Spatiotemporal Big Data: A Vision on Opportunities and
Challenges [4.497634148674422]
Intemporal big data can foster new opportunities to solve problems that have not been possible before.
The distinctive characteristics of big data pose new challenges for deep learning technologies.
arXiv Detail & Related papers (2023-10-30T19:12:51Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning [58.107474025048866]
Forgetting refers to the loss or deterioration of previously acquired knowledge.
Forgetting is a prevalent phenomenon observed in various other research domains within deep learning.
arXiv Detail & Related papers (2023-07-16T16:27:58Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Transferability in Deep Learning: A Survey [80.67296873915176]
The ability to acquire and reuse knowledge is known as transferability in deep learning.
We present this survey to connect different isolated areas in deep learning with their relation to transferability.
We implement a benchmark and an open-source library, enabling a fair evaluation of deep learning methods in terms of transferability.
arXiv Detail & Related papers (2022-01-15T15:03:17Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Deep Learning for Road Traffic Forecasting: Does it Make a Difference? [6.220008946076208]
This paper focuses on critically analyzing the state of the art in what refers to the use of Deep Learning for this particular ITS research area.
A posterior critical analysis is held to formulate questions and trigger a necessary debate about the issues of Deep Learning for traffic forecasting.
arXiv Detail & Related papers (2020-12-02T15:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.