Spatio-temporal Attention-based Hidden Physics-informed Neural Network for Remaining Useful Life Prediction
- URL: http://arxiv.org/abs/2405.12377v1
- Date: Mon, 20 May 2024 21:10:18 GMT
- Title: Spatio-temporal Attention-based Hidden Physics-informed Neural Network for Remaining Useful Life Prediction
- Authors: Feilong Jiang, Xiaonan Hou, Min Xia,
- Abstract summary: We introduce a Spatio-temporal Attention-based Hidden Physics-informed Neural Network (STA-HPINN) for predicting Remaining Useful Life (RUL)
The hidden physics-informed neural network is utilized to capture the dimension physics mechanisms that govern the evolution of RUL.
The approach is validated on a benchmark dataset, demonstrating exceptional performance when compared to cutting-edge methods.
- Score: 1.8554335256160261
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the Remaining Useful Life (RUL) is essential in Prognostic Health Management (PHM) for industrial systems. Although deep learning approaches have achieved considerable success in predicting RUL, challenges such as low prediction accuracy and interpretability pose significant challenges, hindering their practical implementation. In this work, we introduce a Spatio-temporal Attention-based Hidden Physics-informed Neural Network (STA-HPINN) for RUL prediction, which can utilize the associated physics of the system degradation. The spatio-temporal attention mechanism can extract important features from the input data. With the self-attention mechanism on both the sensor dimension and time step dimension, the proposed model can effectively extract degradation information. The hidden physics-informed neural network is utilized to capture the physics mechanisms that govern the evolution of RUL. With the constraint of physics, the model can achieve higher accuracy and reasonable predictions. The approach is validated on a benchmark dataset, demonstrating exceptional performance when compared to cutting-edge methods, especially in the case of complex conditions.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks [17.91230192726962]
This paper proposes a physical-guided neural network to estimate the Stemporal dynamics.
We also propose an adaptive second-order Runge-Kutta method with physical constraints to model the physical states more precisely.
Our model outperforms state-of-the-art methods and performs best in datasets, with a much smaller parameter count.
arXiv Detail & Related papers (2024-05-23T12:39:49Z) - AirPhyNet: Harnessing Physics-Guided Neural Networks for Air Quality
Prediction [40.58819011476455]
This paper presents a novel approach named Physics guided Neural Network for Air Quality Prediction (AirPhyNet)
We leverage two well-established physics principles of air particle movement (diffusion and advection) by representing them as differential equation networks.
Experiments on two real-world benchmark datasets demonstrate that AirPhyNet outperforms state-of-the-art models for different testing scenarios.
arXiv Detail & Related papers (2024-02-06T07:55:54Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Remaining Useful Life Prediction Using Temporal Deep Degradation Network
for Complex Machinery with Attention-based Feature Extraction [17.831515307314802]
Degradation-related features extracted from the sensor streaming data with neural networks can dramatically improve the accuracy of the RUL prediction.
The Temporal deep degradation network (TDDN) model is proposed to make the RUL prediction with the degradation-related features given by the one-dimensional convolutional neural network (1D CNN)
The results show that the TDDN model can achieve the best RUL prediction accuracy in complex conditions compared to current machine learning models.
arXiv Detail & Related papers (2022-02-21T10:23:40Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Physics-enhanced Neural Networks in the Small Data Regime [0.0]
We show that by considering the actual energy level as a regularization term during training, the results can be further improved.
Especially in the case where only small amounts of data are available, these improvements can significantly enhance the predictive capability.
arXiv Detail & Related papers (2021-11-19T17:21:14Z) - Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems [15.923190628643681]
One of the major challenges is to infer the underlying causes, which generate the perceived data stream.
Success of machine learning based predictive models requires massive annotated data for model training.
Our experiments on both synthetic and real-world datasets exhibit that the proposed ST-PCNN with active learning converges to optimal accuracy with substantially fewer instances.
arXiv Detail & Related papers (2021-08-11T18:05:55Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.