論文の概要: Can Chat GPT solve a Linguistics Exam?
- arxiv url: http://arxiv.org/abs/2311.02499v1
- Date: Sat, 4 Nov 2023 20:02:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-07 17:17:31.798444
- Title: Can Chat GPT solve a Linguistics Exam?
- Title(参考訳): チャットGPTは言語実験を解けるか?
- Authors: Patricia Ronan, Gerold Schneider
- Abstract要約: 本研究は、言語モデルGPT4を用いたChatGPT4のバージョンであるChatGPT4が、導入言語試験をうまく解決できるかどうかを問うものである。
ドイツの大学における言語学入門講座の以前の試験質問は、これをテストするのに使われている。
その結果、複雑なタスクやネストされたタスクであっても、言語モデルは非常にうまく解釈できることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The present study asks if ChatGPT4, the version of ChatGPT which uses the
language model GPT4, can successfully solve introductory linguistic exams.
Previous exam questions of an Introduction to Linguistics course at a German
university are used to test this. The exam questions were fed into ChatGPT4
with only minimal preprocessing. The results show that the language model is
very successful in the interpretation even of complex and nested tasks. It
proved surprisingly successful in the task of broad phonetic transcription, but
performed less well in the analysis of morphemes and phrases. In simple cases
it performs sufficiently well, but rarer cases, particularly with missing
one-to-one correspondence, are currently treated with mixed results. The model
is not yet able to deal with visualisations, such as the analysis or generation
of syntax trees. More extensive preprocessing, which translates these tasks
into text data, allow the model to also solve these tasks successfully.
- Abstract(参考訳): 本研究は、言語モデルGPT4を用いたChatGPT4のバージョンであるChatGPT4が、導入言語試験をうまく解決できるかどうかを問うものである。
ドイツの大学における言語学コースの紹介に関するこれまでの試験質問は、この試験に使われている。
試験質問は、最小限の事前処理のみでChatGPT4に送付された。
その結果,複雑なタスクやネストタスクの解釈においても,言語モデルは非常に成功していることがわかった。
広い音素転写のタスクでは驚くほど成功したが、形態素やフレーズの分析ではあまりうまく機能しなかった。
単純な場合では十分に機能するが、特に1対1の対応が欠如している稀なケースは、現在混合した結果で処理されている。
このモデルは、構文木の分析や生成のような視覚化を扱うことができない。
これらのタスクをテキストデータに変換するより広範な前処理は、モデルがこれらのタスクをうまく解決するのを可能にする。
関連論文リスト
- Exploring ChatGPT's Capabilities on Vulnerability Management [56.4403395100589]
我々は、70,346のサンプルを含む大規模なデータセットを用いて、完全な脆弱性管理プロセスを含む6つのタスクでChatGPTの機能を探求する。
注目すべき例として、ChatGPTのソフトウェアバグレポートのタイトル生成などのタスクにおける熟練度がある。
以上の結果から,ChatGPTが抱える障害が明らかとなり,将来的な方向性に光を当てた。
論文 参考訳(メタデータ) (2023-11-11T11:01:13Z) - Counting the Bugs in ChatGPT's Wugs: A Multilingual Investigation into
the Morphological Capabilities of a Large Language Model [23.60677380868016]
大規模言語モデル (LLM) は近年,人間の言語スキルと比較する上で,目覚ましい言語能力に達している。
そこで本研究では,4言語でChatGPTの形態的能力の厳密な分析を行う。
ChatGPTは、特に英語の目的構築システムでは大幅に性能が低下している。
論文 参考訳(メタデータ) (2023-10-23T17:21:03Z) - Taqyim: Evaluating Arabic NLP Tasks Using ChatGPT Models [6.145834902689888]
大規模言語モデル(LLM)は、微調整を必要とせず、様々な下流タスクにおける印象的なパフォーマンスを示している。
英語に比べて訓練率が低いにもかかわらず、これらのモデルは他の言語でも顕著な能力を示す。
本研究では,7つの異なるNLPタスクにおいて,GPT-3.5およびGPT-4モデルの性能を評価する。
論文 参考訳(メタデータ) (2023-06-28T15:54:29Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - Towards Making the Most of ChatGPT for Machine Translation [75.576405098545]
ChatGPTは機械翻訳(MT)の優れた機能を示す
いくつかの先行研究により、ハイソース言語の商用システムと同等の結果が得られることが示されている。
論文 参考訳(メタデータ) (2023-03-24T03:35:21Z) - Exploring the Feasibility of ChatGPT for Event Extraction [31.175880361951172]
イベント抽出は、自然言語処理における基本的なタスクであり、テキストで言及されたイベントに関する情報を特定し、抽出する。
ChatGPTは、タスク固有のデータセットや微調整を必要とせずに、単純なプロンプトで言語タスクを解決する機会を提供する。
また,ChatGPTは,脳波や複雑なシナリオにおけるタスク固有モデルの性能の51.04%に過ぎなかった。
論文 参考訳(メタデータ) (2023-03-07T12:03:58Z) - ChatGPT: Jack of all trades, master of none [4.693597927153063]
OpenAIはChat Generative Pre-trained Transformer (ChatGPT)をリリースした。
25種類のNLPタスクにおけるChatGPTの機能について検討した。
われわれはChatGPTとGPT-4のプロンプト処理を自動化し,49k以上の応答を解析した。
論文 参考訳(メタデータ) (2023-02-21T15:20:37Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクをゼロショットで実行できることを実証している。
近年、ChatGPTのデビューは自然言語処理(NLP)コミュニティから大きな注目を集めている。
ChatGPTが多くのNLPタスクをゼロショットで実行できるジェネラリストモデルとして機能するかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-02-08T09:44:51Z) - Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine [97.8609714773255]
機械翻訳におけるChatGPTの評価には,翻訳プロンプト,多言語翻訳,翻訳堅牢性などが含まれる。
ChatGPTは商用翻訳製品と競合するが、低リソースや遠方の言語では遅れている。
GPT-4エンジンの打ち上げにより、ChatGPTの翻訳性能は大幅に向上した。
論文 参考訳(メタデータ) (2023-01-20T08:51:36Z) - Language Models are Few-Shot Learners [61.36677350504291]
言語モデルのスケールアップにより、タスクに依存しない、少数ショットのパフォーマンスが大幅に向上することを示す。
我々は、1750億のパラメータを持つ自動回帰言語モデルであるGPT-3を訓練し、その性能を数ショットでテストする。
GPT-3は、翻訳、質問応答、クローズタスクを含む多くのNLPデータセットで高いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-05-28T17:29:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。