On the Second-Order Convergence of Biased Policy Gradient Algorithms
- URL: http://arxiv.org/abs/2311.02546v4
- Date: Tue, 14 May 2024 00:42:21 GMT
- Title: On the Second-Order Convergence of Biased Policy Gradient Algorithms
- Authors: Siqiao Mu, Diego Klabjan,
- Abstract summary: gradient policy escapes saddle at second-order stationary points.
We provide a novel second-order analysis of biased gradient methods.
We also establish the convergence points on chains initial state distribution.
- Score: 11.955062839855334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since the objective functions of reinforcement learning problems are typically highly nonconvex, it is desirable that policy gradient, the most popular algorithm, escapes saddle points and arrives at second-order stationary points. Existing results only consider vanilla policy gradient algorithms with unbiased gradient estimators, but practical implementations under the infinite-horizon discounted reward setting are biased due to finite-horizon sampling. Moreover, actor-critic methods, whose second-order convergence has not yet been established, are also biased due to the critic approximation of the value function. We provide a novel second-order analysis of biased policy gradient methods, including the vanilla gradient estimator computed from Monte-Carlo sampling of trajectories as well as the double-loop actor-critic algorithm, where in the inner loop the critic improves the approximation of the value function via TD(0) learning. Separately, we also establish the convergence of TD(0) on Markov chains irrespective of initial state distribution.
Related papers
- Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
We propose a Trust Sequential Quadratic Programming method to find both first and second-order stationary points.
To converge to first-order stationary points, our method computes a gradient step in each iteration defined by minimizing a approximation of the objective subject.
To converge to second-order stationary points, our method additionally computes an eigen step to explore the negative curvature the reduced Hessian matrix.
arXiv Detail & Related papers (2024-09-24T04:39:47Z) - Compatible Gradient Approximations for Actor-Critic Algorithms [0.0]
We introduce an actor-critic algorithm that bypasses the need for such precision by employing a zerothorder approximation of the action-value gradient.
Empirical results demonstrate that our algorithm not only matches but frequently exceeds the performance of current state-of-the-art methods.
arXiv Detail & Related papers (2024-09-02T22:00:50Z) - Beyond Exact Gradients: Convergence of Stochastic Soft-Max Policy Gradient Methods with Entropy Regularization [20.651913793555163]
We revisit the classical entropy regularized policy gradient methods with the soft-max policy parametrization.
We establish a global optimality convergence result and a sample complexity of $widetildemathcalO(frac1epsilon2)$ for the proposed algorithm.
arXiv Detail & Related papers (2021-10-19T17:21:09Z) - A Two-Time-Scale Stochastic Optimization Framework with Applications in Control and Reinforcement Learning [13.908826484332282]
We study a new two-time-scale gradient method for solving optimization problems.
Our first contribution is to characterize the finite-time complexity of the proposed two-time-scale gradient algorithm.
We apply our framework to gradient-based policy evaluation algorithms in reinforcement learning.
arXiv Detail & Related papers (2021-09-29T23:15:23Z) - High-probability Bounds for Non-Convex Stochastic Optimization with
Heavy Tails [55.561406656549686]
We consider non- Hilbert optimization using first-order algorithms for which the gradient estimates may have tails.
We show that a combination of gradient, momentum, and normalized gradient descent convergence to critical points in high-probability with best-known iteration for smooth losses.
arXiv Detail & Related papers (2021-06-28T00:17:01Z) - Average-Reward Off-Policy Policy Evaluation with Function Approximation [66.67075551933438]
We consider off-policy policy evaluation with function approximation in average-reward MDPs.
bootstrapping is necessary and, along with off-policy learning and FA, results in the deadly triad.
We propose two novel algorithms, reproducing the celebrated success of Gradient TD algorithms in the average-reward setting.
arXiv Detail & Related papers (2021-01-08T00:43:04Z) - Smoothed functional-based gradient algorithms for off-policy reinforcement learning: A non-asymptotic viewpoint [8.087699764574788]
We propose two policy gradient algorithms for solving the problem of control in an off-policy reinforcement learning context.
Both algorithms incorporate a smoothed functional (SF) based gradient estimation scheme.
arXiv Detail & Related papers (2021-01-06T17:06:42Z) - Policy Gradient for Continuing Tasks in Non-stationary Markov Decision
Processes [112.38662246621969]
Reinforcement learning considers the problem of finding policies that maximize an expected cumulative reward in a Markov decision process with unknown transition probabilities.
We compute unbiased navigation gradients of the value function which we use as ascent directions to update the policy.
A major drawback of policy gradient-type algorithms is that they are limited to episodic tasks unless stationarity assumptions are imposed.
arXiv Detail & Related papers (2020-10-16T15:15:42Z) - Deep Bayesian Quadrature Policy Optimization [100.81242753620597]
Deep Bayesian quadrature policy gradient (DBQPG) is a high-dimensional generalization of Bayesian quadrature for policy gradient estimation.
We show that DBQPG can substitute Monte-Carlo estimation in policy gradient methods, and demonstrate its effectiveness on a set of continuous control benchmarks.
arXiv Detail & Related papers (2020-06-28T15:44:47Z) - Policy Gradient using Weak Derivatives for Reinforcement Learning [24.50189361694407]
This paper considers policy search in continuous state-action reinforcement learning problems.
The gradient estimates obtained using weak derivatives is shown to be lower than those obtained using the popular score-function approach.
arXiv Detail & Related papers (2020-04-09T23:05:18Z) - Statistically Efficient Off-Policy Policy Gradients [80.42316902296832]
We consider the statistically efficient estimation of policy gradients from off-policy data.
We propose a meta-algorithm that achieves the lower bound without any parametric assumptions.
We establish guarantees on the rate at which we approach a stationary point when we take steps in the direction of our new estimated policy gradient.
arXiv Detail & Related papers (2020-02-10T18:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.