Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models
- URL: http://arxiv.org/abs/2409.15734v2
- Date: Thu, 26 Sep 2024 04:37:48 GMT
- Title: Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models
- Authors: Yuchen Fang, Sen Na, Michael W. Mahoney, Mladen Kolar,
- Abstract summary: We propose a Trust Sequential Quadratic Programming method to find both first and second-order stationary points.
To converge to first-order stationary points, our method computes a gradient step in each iteration defined by minimizing a approximation of the objective subject.
To converge to second-order stationary points, our method additionally computes an eigen step to explore the negative curvature the reduced Hessian matrix.
- Score: 57.52124921268249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we consider solving optimization problems with a stochastic objective and deterministic equality constraints. We propose a Trust-Region Sequential Quadratic Programming method to find both first- and second-order stationary points. Our method utilizes a random model to represent the objective function, which is constructed from stochastic observations of the objective and is designed to satisfy proper adaptive accuracy conditions with a high but fixed probability. To converge to first-order stationary points, our method computes a gradient step in each iteration defined by minimizing a quadratic approximation of the objective subject to a (relaxed) linear approximation of the problem constraints and a trust-region constraint. To converge to second-order stationary points, our method additionally computes an eigen step to explore the negative curvature of the reduced Hessian matrix, as well as a second-order correction step to address the potential Maratos effect, which arises due to the nonlinearity of the problem constraints. Such an effect may impede the method from moving away from saddle points. Both gradient and eigen step computations leverage a novel parameter-free decomposition of the step and the trust-region radius, accounting for the proportions among the feasibility residual, optimality residual, and negative curvature. We establish global almost sure first- and second-order convergence guarantees for our method, and present computational results on CUTEst problems, regression problems, and saddle-point problems to demonstrate its superiority over existing line-search-based stochastic methods.
Related papers
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
We study the Constrained Convex Decision Process (MDP), where the goal is to minimize a convex functional of the visitation measure.
Design algorithms for a constrained convex MDP faces several challenges, including handling the large state space.
arXiv Detail & Related papers (2024-02-16T16:35:18Z) - Almost-sure convergence of iterates and multipliers in stochastic
sequential quadratic optimization [21.022322975077653]
Methods for solving continuous optimization problems with equality constraints have attracted attention recently.
convergence guarantees have been limited to the expected value of a gradient to measure zero.
New almost-sure convergence guarantees for the primals, Lagrange measures and station measures generated by a SQP algorithm are proved.
arXiv Detail & Related papers (2023-08-07T16:03:40Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems [12.29270365918848]
The proposed algorithm is based on the subject-point unique constraints from other interior-point methods.
It is shown that with a careful balance between the projection, step-size and sequence sequences, the proposed algorithm convergence guarantees in both numerical and deterministic settings.
arXiv Detail & Related papers (2023-04-28T15:30:43Z) - A Sequential Quadratic Programming Method with High Probability Complexity Bounds for Nonlinear Equality Constrained Stochastic Optimization [2.3814052021083354]
It is assumed that constraint function values and derivatives are available, but only programming approximations of the objective function and its associated derivatives can be computed.
A high-probability bound on the iteration complexity of the algorithm to approximate first-order stationarity is derived.
arXiv Detail & Related papers (2023-01-01T21:46:50Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
We propose a sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with objectives and deterministic equality constraints.
The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to utilize indefinite Hessian matrices.
arXiv Detail & Related papers (2022-11-29T05:52:17Z) - Stochastic Mirror Descent for Large-Scale Sparse Recovery [13.500750042707407]
We discuss an application of quadratic Approximation to statistical estimation of high-dimensional sparse parameters.
We show that the proposed algorithm attains the optimal convergence of the estimation error under weak assumptions on the regressor distribution.
arXiv Detail & Related papers (2022-10-23T23:23:23Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.