論文の概要: Architecture Matters: Uncovering Implicit Mechanisms in Graph
Contrastive Learning
- arxiv url: http://arxiv.org/abs/2311.02687v1
- Date: Sun, 5 Nov 2023 15:54:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-07 16:13:38.471304
- Title: Architecture Matters: Uncovering Implicit Mechanisms in Graph
Contrastive Learning
- Title(参考訳): アーキテクチャの問題:グラフコントラスト学習における暗黙のメカニズムを明らかにする
- Authors: Xiaojun Guo, Yifei Wang, Zeming Wei, Yisen Wang
- Abstract要約: 本稿では,グラフコントラスト学習法(GCL)の体系的研究について述べる。
GNNの暗黙的帰納バイアスが対照的な学習にどのように作用するかを明らかにすることによって、理論上はGCLの興味深い性質に関する洞察を提供する。
既存のNNメソッドを直接GCLに移植するのではなく、グラフ学習のユニークなアーキテクチャにもっと注意を払うことを提唱する。
- 参考スコア(独自算出の注目度): 34.566003077992384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the prosperity of contrastive learning for visual representation
learning (VCL), it is also adapted to the graph domain and yields promising
performance. However, through a systematic study of various graph contrastive
learning (GCL) methods, we observe that some common phenomena among existing
GCL methods that are quite different from the original VCL methods, including
1) positive samples are not a must for GCL; 2) negative samples are not
necessary for graph classification, neither for node classification when
adopting specific normalization modules; 3) data augmentations have much less
influence on GCL, as simple domain-agnostic augmentations (e.g., Gaussian
noise) can also attain fairly good performance. By uncovering how the implicit
inductive bias of GNNs works in contrastive learning, we theoretically provide
insights into the above intriguing properties of GCL. Rather than directly
porting existing VCL methods to GCL, we advocate for more attention toward the
unique architecture of graph learning and consider its implicit influence when
designing GCL methods. Code is available at https:
//github.com/PKU-ML/ArchitectureMattersGCL.
- Abstract(参考訳): 視覚表現学習(VCL)のためのコントラスト学習の繁栄により、グラフ領域にも適応し、有望な性能が得られる。
しかし,様々なグラフコントラスト学習法(GCL)の体系的研究により,従来のVCL法とは全く異なる既存のGCL法に共通する現象がみられた。
1) 陽性サンプルはgclの必須条件ではない。
2) グラフ分類には負のサンプルは不要であり, 特定の正規化モジュールを採用する場合, ノード分類にも必要ではない。
3)データ拡張は、単純なドメインに依存しない拡張(例えばガウスノイズ)もかなり良い性能が得られるため、GCLにはるかに影響しない。
GNNの暗黙的帰納バイアスが対照的な学習にどのように作用するかを明らかにすることによって、理論上はGCLの興味深い性質に関する洞察を提供する。
既存のVCLメソッドを直接GCLに移植するのではなく,グラフ学習のユニークなアーキテクチャに注目し,GCLメソッドの設計におけるその暗黙の影響を考察する。
コードはhttps: //github.com/PKU-ML/ArchitectureMattersGCLで入手できる。
関連論文リスト
- L^2CL: Embarrassingly Simple Layer-to-Layer Contrastive Learning for Graph Collaborative Filtering [33.165094795515785]
グラフニューラルネットワーク(GNN)は、最近、協調フィルタリングにおいて近隣の信号をモデル化するための効果的なアプローチとして登場した。
L2CLは、異なるレイヤの表現を対比する、原則的なレイヤ間コントラスト学習フレームワークである。
その結果,L2CLは,一対一のコントラスト学習パラダイムのみを用いて,固有の意味構造をキャプチャし,ノード表現の質を向上させることができることがわかった。
論文 参考訳(メタデータ) (2024-07-19T12:45:21Z) - Hierarchical Topology Isomorphism Expertise Embedded Graph Contrastive
Learning [37.0788516033498]
本稿では,新しい階層型トポロジアイソモーフィズムの専門知識をグラフに組み込んだコントラスト学習を提案する。
我々は,提案手法が複数の最先端GCLモデルに対して普遍的であることを実証的に実証した。
本手法は、教師なし表現学習環境において、最先端の手法を0.23%上回る。
論文 参考訳(メタデータ) (2023-12-21T14:07:46Z) - Rethinking and Simplifying Bootstrapped Graph Latents [48.76934123429186]
グラフ・コントラッシブ・ラーニング(GCL)はグラフ自己教師型ラーニングにおいて代表的なパラダイムとして登場した。
SGCLは2つの繰り返しの出力を正のペアとして利用するシンプルで効果的なGCLフレームワークである。
我々は,SGCLがより少ないパラメータ,少ない時間と空間コスト,およびかなりの収束速度で競合性能を達成可能であることを示す。
論文 参考訳(メタデータ) (2023-12-05T09:49:50Z) - HomoGCL: Rethinking Homophily in Graph Contrastive Learning [64.85392028383164]
HomoGCL はモデルに依存しないフレームワークで、近隣のノードに固有の意味を持つ正の集合を拡大する。
我々は、HomoGCLが6つの公開データセットにまたがって複数の最先端結果をもたらすことを示す。
論文 参考訳(メタデータ) (2023-06-16T04:06:52Z) - CARL-G: Clustering-Accelerated Representation Learning on Graphs [18.763104937800215]
本稿では,クラスタ検証指標(CVI)にインスパイアされた損失を利用したグラフ表現学習のための新しいクラスタリングベースのフレームワークを提案する。
CARL-Gはクラスタリング法やCVIに適応し,クラスタリング法とCVIの適切な選択により,CARL-Gは4/5データセットのノード分類ベースラインを最大79倍のトレーニングスピードアップで上回ることを示す。
論文 参考訳(メタデータ) (2023-06-12T08:14:42Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
局所グラフコントラスト学習(Local-GCL)という,シンプルだが効果的なコントラストモデルを導入する。
その単純さにもかかわらず、Local-GCLは、様々なスケールと特性を持つグラフ上の自己教師付きノード表現学習タスクにおいて、非常に競争力のある性能を達成する。
論文 参考訳(メタデータ) (2022-12-08T23:36:00Z) - Single-Pass Contrastive Learning Can Work for Both Homophilic and
Heterophilic Graph [60.28340453547902]
グラフコントラッシブ・ラーニング(GCL)技術は通常、コントラッシブ・ロスを構築するために単一のインスタンスに対して2つのフォワードパスを必要とする。
既存のGCLアプローチは、強力なパフォーマンス保証を提供していない。
我々はSingle-Pass Graph Contrastive Learning法(SP-GCL)を実装した。
経験的に、SP-GCLが学んだ機能は、計算オーバーヘッドを著しく少なくして、既存の強いベースラインにマッチまたは性能を向上することができる。
論文 参考訳(メタデータ) (2022-11-20T07:18:56Z) - Unifying Graph Contrastive Learning with Flexible Contextual Scopes [57.86762576319638]
フレキシブルコンテキストスコープを用いたグラフコントラスト学習(略してUGCL)という自己教師型学習手法を提案する。
本アルゴリズムは,隣接行列のパワーを制御し,コンテキストスコープによるフレキシブルな文脈表現を構築する。
局所的スコープと文脈的スコープの両方の表現に基づいて、distLはグラフ表現学習のための非常に単純な対照的な損失関数を最適化する。
論文 参考訳(メタデータ) (2022-10-17T07:16:17Z) - Revisiting Graph Contrastive Learning from the Perspective of Graph
Spectrum [91.06367395889514]
グラフ拡張によるノード表現の学習には,GCL(Graph Contrastive Learning)が注目されている。
GCLとグラフスペクトルの関連性を確立することで,これらの疑問に答える。
汎用かつGCLフレンドリなプラグインであるスペクトルグラフコントラスト学習モジュール(SpCo)を提案する。
論文 参考訳(メタデータ) (2022-10-05T15:32:00Z) - Graph Soft-Contrastive Learning via Neighborhood Ranking [19.241089079154044]
グラフコントラスト学習(GCL)は,グラフ自己教師型学習の領域において,有望なアプローチとして登場した。
グラフソフトコントラスト学習(GSCL)という新しいパラダイムを提案する。
GSCLは地域ランキングを通じてGCLを促進するため、全く同様のペアを特定する必要がなくなる。
論文 参考訳(メタデータ) (2022-09-28T09:52:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。