Mesh Neural Cellular Automata
- URL: http://arxiv.org/abs/2311.02820v2
- Date: Thu, 16 May 2024 12:32:28 GMT
- Title: Mesh Neural Cellular Automata
- Authors: Ehsan Pajouheshgar, Yitao Xu, Alexander Mordvintsev, Eyvind Niklasson, Tong Zhang, Sabine Süsstrunk,
- Abstract summary: We propose Mesh Neural Cellular Automata (MeshNCA), a method that directly synthesizes dynamic textures on 3D meshes without requiring any UV maps.
Only trained on an Icosphere mesh, MeshNCA shows remarkable test-time generalization and can synthesize textures on unseen meshes in real time.
- Score: 62.101063045659906
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Texture modeling and synthesis are essential for enhancing the realism of virtual environments. Methods that directly synthesize textures in 3D offer distinct advantages to the UV-mapping-based methods as they can create seamless textures and align more closely with the ways textures form in nature. We propose Mesh Neural Cellular Automata (MeshNCA), a method that directly synthesizes dynamic textures on 3D meshes without requiring any UV maps. MeshNCA is a generalized type of cellular automata that can operate on a set of cells arranged on non-grid structures such as the vertices of a 3D mesh. MeshNCA accommodates multi-modal supervision and can be trained using different targets such as images, text prompts, and motion vector fields. Only trained on an Icosphere mesh, MeshNCA shows remarkable test-time generalization and can synthesize textures on unseen meshes in real time. We conduct qualitative and quantitative comparisons to demonstrate that MeshNCA outperforms other 3D texture synthesis methods in terms of generalization and producing high-quality textures. Moreover, we introduce a way of grafting trained MeshNCA instances, enabling interpolation between textures. MeshNCA allows several user interactions including texture density/orientation controls, grafting/regenerate brushes, and motion speed/direction controls. Finally, we implement the forward pass of our MeshNCA model using the WebGL shading language and showcase our trained models in an online interactive demo, which is accessible on personal computers and smartphones and is available at https://meshnca.github.io.
Related papers
- DreamMesh: Jointly Manipulating and Texturing Triangle Meshes for Text-to-3D Generation [149.77077125310805]
We present DreamMesh, a novel text-to-3D architecture that pivots on well-defined surfaces (triangle meshes) to generate high-fidelity explicit 3D model.
In the coarse stage, the mesh is first deformed by text-guided Jacobians and then DreamMesh textures the mesh with an interlaced use of 2D diffusion models.
In the fine stage, DreamMesh jointly manipulates the mesh and refines the texture map, leading to high-quality triangle meshes with high-fidelity textured materials.
arXiv Detail & Related papers (2024-09-11T17:59:02Z) - Multi-Texture Synthesis through Signal Responsive Neural Cellular Automata [44.99833362998488]
We train a single NCA for the evolution of multiple textures, based on individual examples.
Our solution provides texture information in the state of each cell, in the form of an internally coded genomic signal, which enables the NCA to generate the expected texture.
arXiv Detail & Related papers (2024-07-08T14:36:20Z) - FLARE: Fast Learning of Animatable and Relightable Mesh Avatars [64.48254296523977]
Our goal is to efficiently learn personalized animatable 3D head avatars from videos that are geometrically accurate, realistic, relightable, and compatible with current rendering systems.
We introduce FLARE, a technique that enables the creation of animatable and relightable avatars from a single monocular video.
arXiv Detail & Related papers (2023-10-26T16:13:00Z) - GET3D: A Generative Model of High Quality 3D Textured Shapes Learned
from Images [72.15855070133425]
We introduce GET3D, a Generative model that directly generates Explicit Textured 3D meshes with complex topology, rich geometric details, and high-fidelity textures.
GET3D is able to generate high-quality 3D textured meshes, ranging from cars, chairs, animals, motorbikes and human characters to buildings.
arXiv Detail & Related papers (2022-09-22T17:16:19Z) - AUV-Net: Learning Aligned UV Maps for Texture Transfer and Synthesis [78.17671694498185]
We propose AUV-Net which learns to embed 3D surfaces into a 2D aligned UV space.
As a result, textures are aligned across objects, and can thus be easily synthesized by generative models of images.
The learned UV mapping and aligned texture representations enable a variety of applications including texture transfer, texture synthesis, and textured single view 3D reconstruction.
arXiv Detail & Related papers (2022-04-06T21:39:24Z) - N-Cloth: Predicting 3D Cloth Deformation with Mesh-Based Networks [69.94313958962165]
We present a novel mesh-based learning approach (N-Cloth) for plausible 3D cloth deformation prediction.
We use graph convolution to transform the cloth and object meshes into a latent space to reduce the non-linearity in the mesh space.
Our approach can handle complex cloth meshes with up to $100$K triangles and scenes with various objects corresponding to SMPL humans, Non-SMPL humans, or rigid bodies.
arXiv Detail & Related papers (2021-12-13T03:13:11Z) - Text2Mesh: Text-Driven Neural Stylization for Meshes [18.435567297462416]
Our framework, Text2Mesh, stylizes a 3D mesh by predicting color and local geometric details which conform to a target text prompt.
We consider a disentangled representation of a 3D object using a fixed mesh input (content) coupled with a learned neural network, which we term neural style field network.
In order to modify style, we obtain a similarity score between a text prompt (describing style) and a stylized mesh by harnessing the representational power of CLIP.
arXiv Detail & Related papers (2021-12-06T18:23:29Z) - Novel-View Human Action Synthesis [39.72702883597454]
We present a novel 3D reasoning to synthesize the target viewpoint.
We first estimate the 3D mesh of the target body and transfer the rough textures from the 2D images to the mesh.
We produce a semi-dense textured mesh by propagating the transferred textures both locally, within local geodesic neighborhoods, and globally.
arXiv Detail & Related papers (2020-07-06T15:11:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.