GET3D: A Generative Model of High Quality 3D Textured Shapes Learned
from Images
- URL: http://arxiv.org/abs/2209.11163v1
- Date: Thu, 22 Sep 2022 17:16:19 GMT
- Title: GET3D: A Generative Model of High Quality 3D Textured Shapes Learned
from Images
- Authors: Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin,
Daiqing Li, Or Litany, Zan Gojcic, Sanja Fidler
- Abstract summary: We introduce GET3D, a Generative model that directly generates Explicit Textured 3D meshes with complex topology, rich geometric details, and high-fidelity textures.
GET3D is able to generate high-quality 3D textured meshes, ranging from cars, chairs, animals, motorbikes and human characters to buildings.
- Score: 72.15855070133425
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As several industries are moving towards modeling massive 3D virtual worlds,
the need for content creation tools that can scale in terms of the quantity,
quality, and diversity of 3D content is becoming evident. In our work, we aim
to train performant 3D generative models that synthesize textured meshes which
can be directly consumed by 3D rendering engines, thus immediately usable in
downstream applications. Prior works on 3D generative modeling either lack
geometric details, are limited in the mesh topology they can produce, typically
do not support textures, or utilize neural renderers in the synthesis process,
which makes their use in common 3D software non-trivial. In this work, we
introduce GET3D, a Generative model that directly generates Explicit Textured
3D meshes with complex topology, rich geometric details, and high-fidelity
textures. We bridge recent success in the differentiable surface modeling,
differentiable rendering as well as 2D Generative Adversarial Networks to train
our model from 2D image collections. GET3D is able to generate high-quality 3D
textured meshes, ranging from cars, chairs, animals, motorbikes and human
characters to buildings, achieving significant improvements over previous
methods.
Related papers
- ScalingGaussian: Enhancing 3D Content Creation with Generative Gaussian Splatting [30.99112626706754]
The creation of high-quality 3D assets is paramount for applications in digital heritage, entertainment, and robotics.
Traditionally, this process necessitates skilled professionals and specialized software for modeling.
We introduce a novel 3D content creation framework, which generates 3D textures efficiently.
arXiv Detail & Related papers (2024-07-26T18:26:01Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner [34.78919665494048]
CraftsMan can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces.
Our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods.
arXiv Detail & Related papers (2024-05-23T18:30:12Z) - CAT3D: Create Anything in 3D with Multi-View Diffusion Models [87.80820708758317]
We present CAT3D, a method for creating anything in 3D by simulating this real-world capture process with a multi-view diffusion model.
CAT3D can create entire 3D scenes in as little as one minute, and outperforms existing methods for single image and few-view 3D scene creation.
arXiv Detail & Related papers (2024-05-16T17:59:05Z) - En3D: An Enhanced Generative Model for Sculpting 3D Humans from 2D
Synthetic Data [36.51674664590734]
We present En3D, an enhanced izable scheme for high-qualityd 3D human avatars.
Unlike previous works that rely on scarce 3D datasets or limited 2D collections with imbalance viewing angles and pose priors, our approach aims to develop a zero-shot 3D capable of producing 3D humans.
arXiv Detail & Related papers (2024-01-02T12:06:31Z) - HyperStyle3D: Text-Guided 3D Portrait Stylization via Hypernetworks [101.36230756743106]
This paper is inspired by the success of 3D-aware GANs that bridge 2D and 3D domains with 3D fields as the intermediate representation for rendering 2D images.
We propose a novel method, dubbed HyperStyle3D, based on 3D-aware GANs for 3D portrait stylization.
arXiv Detail & Related papers (2023-04-19T07:22:05Z) - CC3D: Layout-Conditioned Generation of Compositional 3D Scenes [49.281006972028194]
We introduce CC3D, a conditional generative model that synthesizes complex 3D scenes conditioned on 2D semantic scene layouts.
Our evaluations on synthetic 3D-FRONT and real-world KITTI-360 datasets demonstrate that our model generates scenes of improved visual and geometric quality.
arXiv Detail & Related papers (2023-03-21T17:59:02Z) - XDGAN: Multi-Modal 3D Shape Generation in 2D Space [60.46777591995821]
We propose a novel method to convert 3D shapes into compact 1-channel geometry images and leverage StyleGAN3 and image-to-image translation networks to generate 3D objects in 2D space.
The generated geometry images are quick to convert to 3D meshes, enabling real-time 3D object synthesis, visualization and interactive editing.
We show both quantitatively and qualitatively that our method is highly effective at various tasks such as 3D shape generation, single view reconstruction and shape manipulation, while being significantly faster and more flexible compared to recent 3D generative models.
arXiv Detail & Related papers (2022-10-06T15:54:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.