Temporal Shift -- Multi-Objective Loss Function for Improved Anomaly
Fall Detection
- URL: http://arxiv.org/abs/2311.02863v1
- Date: Mon, 6 Nov 2023 04:29:12 GMT
- Title: Temporal Shift -- Multi-Objective Loss Function for Improved Anomaly
Fall Detection
- Authors: Stefan Denkovski, Shehroz S. Khan, Alex Mihailidis
- Abstract summary: We propose a new multi-objective loss function called Temporal Shift, which aims to predict both future and reconstructed frames within a window of sequential frames.
With significant improvement across different models, this approach has the potential to be widely adopted and improve anomaly detection capabilities in other settings besides fall detection.
- Score: 3.813649699234981
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Falls are a major cause of injuries and deaths among older adults worldwide.
Accurate fall detection can help reduce potential injuries and additional
health complications. Different types of video modalities can be used in a home
setting to detect falls, including RGB, Infrared, and Thermal cameras. Anomaly
detection frameworks using autoencoders and their variants can be used for fall
detection due to the data imbalance that arises from the rarity and diversity
of falls. However, the use of reconstruction error in autoencoders can limit
the application of networks' structures that propagate information. In this
paper, we propose a new multi-objective loss function called Temporal Shift,
which aims to predict both future and reconstructed frames within a window of
sequential frames. The proposed loss function is evaluated on a
semi-naturalistic fall detection dataset containing multiple camera modalities.
The autoencoders were trained on normal activities of daily living (ADL)
performed by older adults and tested on ADLs and falls performed by young
adults. Temporal shift shows significant improvement to a baseline 3D
Convolutional autoencoder, an attention U-Net CAE, and a multi-modal neural
network. The greatest improvement was observed in an attention U-Net model
improving by 0.20 AUC ROC for a single camera when compared to reconstruction
alone. With significant improvement across different models, this approach has
the potential to be widely adopted and improve anomaly detection capabilities
in other settings besides fall detection.
Related papers
- Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Deep Learning-based Fall Detection Algorithm Using Ensemble Model of
Coarse-fine CNN and GRU Networks [7.624051346741515]
An ensemble model that combines a coarse-fine convolutional neural network and gated recurrent unit is proposed in this study.
The proposed model achieves a recall, precision, and F-score of 92.54%, 96.13%, and 94.26%, respectively.
arXiv Detail & Related papers (2023-04-13T08:30:46Z) - Making Reconstruction-based Method Great Again for Video Anomaly
Detection [64.19326819088563]
Anomaly detection in videos is a significant yet challenging problem.
Existing reconstruction-based methods rely on old-fashioned convolutional autoencoders.
We propose a new autoencoder model for enhanced consecutive frame reconstruction.
arXiv Detail & Related papers (2023-01-28T01:57:57Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Multi Visual Modality Fall Detection Dataset [4.00152916049695]
Falls are one of the leading cause of injury-related deaths among the elderly worldwide.
Effective detection of falls can reduce the risk of complications and injuries.
Video cameras provide a passive alternative; however, regular RGB cameras are impacted by changing lighting conditions and privacy concerns.
arXiv Detail & Related papers (2022-06-25T21:54:26Z) - Memory-augmented Adversarial Autoencoders for Multivariate Time-series
Anomaly Detection with Deep Reconstruction and Prediction [4.033624665609417]
We propose MemAAE, a novel unsupervised anomaly detection method for time-series.
By jointly training two complementary proxy tasks, reconstruction and prediction, we show that detecting anomalies via multiple tasks obtains superior performance.
MemAAE achieves an overall F1 score of 0.90 on four public datasets, significantly outperforming the best baseline by 0.02.
arXiv Detail & Related papers (2021-10-15T18:29:05Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
We propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design.
Our proposed method obtains the frame-level AUROC score of 88.3% on the CUHK Avenue dataset.
arXiv Detail & Related papers (2020-11-05T11:34:12Z) - Motion and Region Aware Adversarial Learning for Fall Detection with
Thermal Imaging [8.110295985047278]
Home-based camera systems for fall detection often put people's privacy at risk.
As fall occurs rarely, it is non-trivial to learn algorithms due to class imbalance.
We formulate fall detection as an anomaly detection within an adversarial framework using thermal imaging.
arXiv Detail & Related papers (2020-04-17T17:17:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.