論文の概要: Exploring Active Learning in Meta-Learning: Enhancing Context Set Labeling
- arxiv url: http://arxiv.org/abs/2311.02879v3
- Date: Wed, 24 Jul 2024 19:10:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 19:46:37.251039
- Title: Exploring Active Learning in Meta-Learning: Enhancing Context Set Labeling
- Title(参考訳): メタラーニングにおけるアクティブラーニングの探求 - コンテキストセットラベリングの強化
- Authors: Wonho Bae, Jing Wang, Danica J. Sutherland,
- Abstract要約: いくつかの設定では、ラベルのどのポイントを積極的に選択することが可能である。
ガウス混合体を適合させてラベルのどの点を選択するかを選択する自然アルゴリズムを提案する。
提案アルゴリズムは、複数のベンチマークデータセットにまたがる様々なメタラーニングアルゴリズムを使用する場合、最先端のアクティブラーニング手法より優れている。
- 参考スコア(独自算出の注目度): 17.563853245956455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most meta-learning methods assume that the (very small) context set used to establish a new task at test time is passively provided. In some settings, however, it is feasible to actively select which points to label; the potential gain from a careful choice is substantial, but the setting requires major differences from typical active learning setups. We clarify the ways in which active meta-learning can be used to label a context set, depending on which parts of the meta-learning process use active learning. Within this framework, we propose a natural algorithm based on fitting Gaussian mixtures for selecting which points to label; though simple, the algorithm also has theoretical motivation. The proposed algorithm outperforms state-of-the-art active learning methods when used with various meta-learning algorithms across several benchmark datasets.
- Abstract(参考訳): ほとんどのメタ学習手法は、テスト時に新しいタスクを確立するのに使用される(非常に小さい)コンテキストセットが受動的に提供されると仮定する。
しかし、ある設定では、どのポイントをラベルにするかを積極的に選択することは可能であり、慎重に選択することによる潜在的な利益は相当であるが、典型的なアクティブな学習設定との大きな違いが必要である。
メタラーニングプロセスのどの部分がアクティブラーニングを使用するかによって、アクティブなメタラーニングを用いてコンテキストセットをラベル付けする方法を明確にする。
本枠組みでは,ラベルのどの点を選択するかを選択するため,ガウス混合に適合した自然なアルゴリズムを提案する。
提案アルゴリズムは、複数のベンチマークデータセットにまたがる様々なメタラーニングアルゴリズムを使用する場合、最先端のアクティブラーニング手法より優れている。
関連論文リスト
- ALPBench: A Benchmark for Active Learning Pipelines on Tabular Data [18.553222868627792]
ラベル付きデータの予算額のみが手に入るような環境では、アクティブラーニングはラベル付けすべき最も情報性の高いデータポイントを選択するためのクエリ戦略を考案しようとする。
活発な学習文献において,このようなクエリ戦略が提案され,比較されている。
コミュニティは、異なるクエリ戦略のパフォーマンスを比較するための標準ベンチマークをまだ持っていない。
論文 参考訳(メタデータ) (2024-06-25T07:14:14Z) - Algorithm Selection for Deep Active Learning with Imbalanced Datasets [11.902019233549474]
アクティブな学習は、ディープネットワークのトレーニングに必要なラベル付きサンプルの数を減らすことを目的としている。
アクティブな学習戦略が与えられたアプリケーションでうまく機能するか、どれが最善であるかを事前に知るのは難しい。
深層能動学習のための適応型アルゴリズム選択手法を提案する。
論文 参考訳(メタデータ) (2023-02-14T19:59:49Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
アクティブラーニング(英: Active Learning)は、ラベリングのための最も重要なサンプルを選択することで、高価なラベリングの問題に対処する研究分野である。
アクティブな学習環境における初期ラベル付けのための最も情報性の高いサンプル群を選択するために,多様性に基づく新しい初期データセット選択アルゴリズムを提案する。
また、一貫性に基づく埋め込みの多様性に基づくサンプリングを用いた、新しいアクティブな学習クエリ戦略を提案する。
論文 参考訳(メタデータ) (2022-07-25T16:11:55Z) - Active metric learning and classification using similarity queries [21.589707834542338]
本稿では、キーコンポーネントが類似性を反映したデータの表現を学習している問題に対して、新しい統合クエリフレームワークを適用することができることを示す。
提案手法の有効性を,アクティブなメトリック学習とアクティブな分類という2つの課題で実証する。
論文 参考訳(メタデータ) (2022-02-04T03:34:29Z) - Meta Navigator: Search for a Good Adaptation Policy for Few-shot
Learning [113.05118113697111]
少ないショット学習は、ラベル付きデータしか持たない新しいタスクに、以前のタスクから学んだ知識を適応させることを目的としている。
少数ショット学習に関する研究文献は、大きな多様性を示し、異なるアルゴリズムは、しばしば異なる少数ショット学習シナリオで優れている。
本稿では,メタナビゲータ(Meta Navigator)について紹介する。
論文 参考訳(メタデータ) (2021-09-13T07:20:01Z) - Meta-Learning with Context-Agnostic Initialisations [86.47040878540139]
メタ学習プロセスにコンテキスト・逆成分を導入する。
これにより、コンテキストに依存しないタスクを一般化したターゲットへの微調整の初期化が実現される。
我々は,3つのメタ学習アルゴリズムと2つの問題に対するアプローチを評価した。
論文 参考訳(メタデータ) (2020-07-29T08:08:38Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
数ショットの分類のためのメタラーニングの鍵となるアイデアは、テスト時に直面した数ショットの状況を模倣することである。
一般化性能を向上させるための適応型タスクサンプリング手法を提案する。
論文 参考訳(メタデータ) (2020-07-17T03:15:53Z) - A Comprehensive Benchmark Framework for Active Learning Methods in
Entity Matching [17.064993611446898]
本稿では,EMのための統合型アクティブラーニングベンチマークフレームワークを構築する。
このフレームワークの目的は、積極的学習の組み合わせがEMにどのような効果をもたらすかについて、実践者のための具体的なガイドラインを可能にすることである。
また、F1スコアの観点から学習モデルの品質を約9%向上し、モデルの品質に影響を与えることなく、サンプル選択のレイテンシを最大10倍削減する新しい最適化も含んでいる。
論文 参考訳(メタデータ) (2020-03-29T19:08:03Z) - Rethinking Few-Shot Image Classification: a Good Embedding Is All You
Need? [72.00712736992618]
メタトレーニングセット上で教師付きあるいは自己教師型表現を学習する単純なベースラインが、最先端の数ショット学習方法より優れていることを示す。
追加の増量は自己蒸留によって達成できる。
我々は,この発見が,画像分類ベンチマークとメタ学習アルゴリズムの役割を再考する動機となっていると考えている。
論文 参考訳(メタデータ) (2020-03-25T17:58:42Z) - Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning [79.25478727351604]
評価基準に基づいて,分類済みモデル全体に対するメタラーニング(メタラーニング)を提案する。
我々は,この単純な手法が標準ベンチマークにおける最先端手法との競合性能を達成するのを観察する。
論文 参考訳(メタデータ) (2020-03-09T20:06:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。