Exploring Active Learning in Meta-Learning: Enhancing Context Set Labeling
- URL: http://arxiv.org/abs/2311.02879v3
- Date: Wed, 24 Jul 2024 19:10:52 GMT
- Title: Exploring Active Learning in Meta-Learning: Enhancing Context Set Labeling
- Authors: Wonho Bae, Jing Wang, Danica J. Sutherland,
- Abstract summary: In some settings, it is feasible to actively select which points to label.
We propose a natural algorithm based on fitting Gaussian mixtures for selecting which points to label.
The proposed algorithm outperforms state-of-the-art active learning methods when used with various meta-learning algorithms across several benchmark datasets.
- Score: 17.563853245956455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most meta-learning methods assume that the (very small) context set used to establish a new task at test time is passively provided. In some settings, however, it is feasible to actively select which points to label; the potential gain from a careful choice is substantial, but the setting requires major differences from typical active learning setups. We clarify the ways in which active meta-learning can be used to label a context set, depending on which parts of the meta-learning process use active learning. Within this framework, we propose a natural algorithm based on fitting Gaussian mixtures for selecting which points to label; though simple, the algorithm also has theoretical motivation. The proposed algorithm outperforms state-of-the-art active learning methods when used with various meta-learning algorithms across several benchmark datasets.
Related papers
- ALPBench: A Benchmark for Active Learning Pipelines on Tabular Data [18.553222868627792]
In settings where only a budgeted amount of labeled data can be afforded, active learning seeks to devise query strategies for selecting the most informative data points to be labeled.
Numerous such query strategies have been proposed and compared in the active learning literature.
The community still lacks standardized benchmarks for comparing the performance of different query strategies.
arXiv Detail & Related papers (2024-06-25T07:14:14Z) - Algorithm Selection for Deep Active Learning with Imbalanced Datasets [11.902019233549474]
Active learning aims to reduce the number of labeled examples needed to train deep networks.
It is difficult to know in advance which active learning strategy will perform well or best in a given application.
We propose the first adaptive algorithm selection strategy for deep active learning.
arXiv Detail & Related papers (2023-02-14T19:59:49Z) - Exploiting Diversity of Unlabeled Data for Label-Efficient
Semi-Supervised Active Learning [57.436224561482966]
Active learning is a research area that addresses the issues of expensive labeling by selecting the most important samples for labeling.
We introduce a new diversity-based initial dataset selection algorithm to select the most informative set of samples for initial labeling in the active learning setting.
Also, we propose a novel active learning query strategy, which uses diversity-based sampling on consistency-based embeddings.
arXiv Detail & Related papers (2022-07-25T16:11:55Z) - Active metric learning and classification using similarity queries [21.589707834542338]
We show that a novel unified query framework can be applied to any problem in which a key component is learning a representation of the data that reflects similarity.
We demonstrate the effectiveness of the proposed strategy on two tasks -- active metric learning and active classification.
arXiv Detail & Related papers (2022-02-04T03:34:29Z) - Meta Navigator: Search for a Good Adaptation Policy for Few-shot
Learning [113.05118113697111]
Few-shot learning aims to adapt knowledge learned from previous tasks to novel tasks with only a limited amount of labeled data.
Research literature on few-shot learning exhibits great diversity, while different algorithms often excel at different few-shot learning scenarios.
We present Meta Navigator, a framework that attempts to solve the limitation in few-shot learning by seeking a higher-level strategy.
arXiv Detail & Related papers (2021-09-13T07:20:01Z) - Meta-Learning with Context-Agnostic Initialisations [86.47040878540139]
We introduce a context-adversarial component into the meta-learning process.
This produces an initialisation for fine-tuning to target which is context-agnostic and task-generalised.
We evaluate our approach on three commonly used meta-learning algorithms and two problems.
arXiv Detail & Related papers (2020-07-29T08:08:38Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
Key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time.
We propose an adaptive task sampling method to improve the generalization performance.
arXiv Detail & Related papers (2020-07-17T03:15:53Z) - A Comprehensive Benchmark Framework for Active Learning Methods in
Entity Matching [17.064993611446898]
In this paper, we build a unified active learning benchmark framework for EM.
The goal of the framework is to enable concrete guidelines for practitioners as to what active learning combinations will work well for EM.
Our framework also includes novel optimizations that improve the quality of the learned model by roughly 9% in terms of F1-score and reduce example selection latencies by up to 10x without affecting the quality of the model.
arXiv Detail & Related papers (2020-03-29T19:08:03Z) - Rethinking Few-Shot Image Classification: a Good Embedding Is All You
Need? [72.00712736992618]
We show that a simple baseline: learning a supervised or self-supervised representation on the meta-training set, outperforms state-of-the-art few-shot learning methods.
An additional boost can be achieved through the use of self-distillation.
We believe that our findings motivate a rethinking of few-shot image classification benchmarks and the associated role of meta-learning algorithms.
arXiv Detail & Related papers (2020-03-25T17:58:42Z) - Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning [79.25478727351604]
We explore a simple process: meta-learning over a whole-classification pre-trained model on its evaluation metric.
We observe this simple method achieves competitive performance to state-of-the-art methods on standard benchmarks.
arXiv Detail & Related papers (2020-03-09T20:06:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.