論文の概要: SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data
- arxiv url: http://arxiv.org/abs/2311.02883v1
- Date: Mon, 6 Nov 2023 05:24:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-07 15:11:01.871071
- Title: SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data
- Title(参考訳): SQLPrompt: 最小ラベル付きデータによるインコンテキストテキストからSQL
- Authors: Ruoxi Sun, Sercan \"O. Arik, Rajarishi Sinha, Hootan Nakhost, Hanjun
Dai, Pengcheng Yin, Tomas Pfister
- Abstract要約: Prompt"は、Text-to-LLMのいくつかのショットプロンプト機能を改善するように設計されている。
Prompt"は、ラベル付きデータが少なく、テキスト内学習における従来のアプローチよりも大きなマージンで優れている。
emphPromptはテキスト内学習における従来の手法よりも優れており,ラベル付きデータはほとんどない。
- 参考スコア(独自算出の注目度): 54.69489315952524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-SQL aims to automate the process of generating SQL queries on a
database from natural language text. In this work, we propose "SQLPrompt",
tailored to improve the few-shot prompting capabilities of Text-to-SQL for
Large Language Models (LLMs). Our methods include innovative prompt design,
execution-based consistency decoding strategy which selects the SQL with the
most consistent execution outcome among other SQL proposals, and a method that
aims to improve performance by diversifying the SQL proposals during
consistency selection with different prompt designs ("MixPrompt") and
foundation models ("MixLLMs"). We show that \emph{SQLPrompt} outperforms
previous approaches for in-context learning with few labeled data by a large
margin, closing the gap with finetuning state-of-the-art with thousands of
labeled data.
- Abstract(参考訳): Text-to-SQLは、自然言語テキストからデータベース上でSQLクエリを生成するプロセスを自動化することを目的としている。
本研究では,Large Language Models (LLM) 用の Text-to-SQL プロンプト機能の改善を目的とした "SQLPrompt" を提案する。
提案手法には,イノベーティブなプロンプト設計,他のSQL提案の中で最も一貫した実行結果を持つSQLを選択する実行ベース一貫性復号戦略,および異なるプロンプト設計と基盤モデル(MixLLMs)との整合性選択において,SQL提案を多様化させることによるパフォーマンス向上を目的とした手法(MixPrompt)が含まれる。
本研究では,ラベル付きデータが少なく,テキスト内学習における従来の手法よりも高い性能を示し,数千のラベル付きデータによる最先端データとのギャップを埋めた。
関連論文リスト
- SQL-GEN: Bridging the Dialect Gap for Text-to-SQL Via Synthetic Data And Model Merging [30.306023265985658]
あらゆる方言に対して高品質な合成学習データを生成するためのフレームワークを提案する。
本稿では,方言間の共有知識を活用する新しいMixture-of-Experts(MoE)を提案する。
論文 参考訳(メタデータ) (2024-08-22T20:50:48Z) - CoE-SQL: In-Context Learning for Multi-Turn Text-to-SQL with Chain-of-Editions [22.493487741249716]
大規模言語モデル(LLM)は、様々なドメインやタスクにおいて印象的な機能を持つことが実証されている。
マルチターンテキスト・ツー・タスクにおけるプロンプト設計の問題について検討し,LLMの推論能力の向上を図る。
論文 参考訳(メタデータ) (2024-05-04T16:56:14Z) - Retrieval-augmented GPT-3.5-based Text-to-SQL Framework with
Sample-aware Prompting and Dynamic Revision Chain [21.593701177605652]
サンプルと動的リビジョンチェーンを含むテキスト・ツー・アウェア・プロンプト・フレームワークを提案する。
提案手法は,質問項目のサンプルと詳細な情報を含む。
人間の介入なしに実行可能で正確なスクルを生成するために、我々は、きめ細かいフィードバックを反復的に適応する動的リビジョンチェーンを設計する。
論文 参考訳(メタデータ) (2023-07-11T07:16:22Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
テキスト・ツー・ドメイン・システムのためのUNIfiedベンチマークを導入する。
公開されているテキストからドメインへのデータセットと29Kデータベースで構成されている。
広く使われているSpiderベンチマークと比較すると、SQLパターンの3倍の増加が紹介されている。
論文 参考訳(メタデータ) (2023-05-25T17:19:52Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
テキストからコーパスへのパースの目的は、自然言語(NL)質問をデータベースが提供するエビデンスに基づいて、対応する構造化クエリ言語()に変換することである。
ディープニューラルネットワークは、入力NL質問から出力クエリへのマッピング関数を自動的に学習するニューラルジェネレーションモデルによって、このタスクを大幅に進歩させた。
論文 参考訳(メタデータ) (2022-08-29T14:24:13Z) - S$^2$SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder
for Text-to-SQL Parsers [66.78665327694625]
テキスト-関係解析のための質問-エンコーダグラフに構文を注入するS$2$を提案する。
また、疎結合制約を用いて多様なエッジ埋め込みを誘導し、ネットワークの性能をさらに向上させる。
スパイダーとロバスト性設定の実験は、提案手法が事前学習モデルを使用する場合、既存のすべての手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-03-14T09:49:15Z) - Weakly Supervised Text-to-SQL Parsing through Question Decomposition [53.22128541030441]
我々は最近提案されたQDMR(QDMR)という意味表現を活用している。
質問やQDMR構造(非専門家によって注釈付けされたり、自動予測されたりする)、回答が与えられたら、我々は自動的にsqlクエリを合成できる。
本結果は,NL-ベンチマークデータを用いて訓練したモデルと,弱い教師付きモデルが競合することを示す。
論文 参考訳(メタデータ) (2021-12-12T20:02:42Z) - Bertrand-DR: Improving Text-to-SQL using a Discriminative Re-ranker [1.049360126069332]
生成テキスト-リミモデルの性能向上を図るために,新しい離散型リランカを提案する。
テキスト・ト・リミモデルとリランカモデルの相対強度を最適性能として解析する。
本稿では,2つの最先端テキスト-リミモデルに適用することで,リランカの有効性を実証する。
論文 参考訳(メタデータ) (2020-02-03T04:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。