Edge2Node: Reducing Edge Prediction to Node Classification
- URL: http://arxiv.org/abs/2311.02921v3
- Date: Wed, 22 Nov 2023 17:26:08 GMT
- Title: Edge2Node: Reducing Edge Prediction to Node Classification
- Authors: Zahed Rahmati
- Abstract summary: We introduce a preliminary idea called Edge2Node which suggests to directly obtain an embedding for each edge, without the need for a scoring function.
This idea wants to create a new graph H based on the graph G given for the edge prediction task, and then suggests reducing the edge prediction task on G to a node classification task on H.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the success of graph neural network models in node classification,
edge prediction (the task of predicting missing or potential links between
nodes in a graph) remains a challenging problem for these models. A common
approach for edge prediction is to first obtain the embeddings of two nodes,
and then a predefined scoring function is used to predict the existence of an
edge between the two nodes. Here, we introduce a preliminary idea called
Edge2Node which suggests to directly obtain an embedding for each edge, without
the need for a scoring function. This idea wants to create a new graph H based
on the graph G given for the edge prediction task, and then suggests reducing
the edge prediction task on G to a node classification task on H. We anticipate
that this introductory method could stimulate further investigations for edge
prediction task.
Related papers
- Refined Edge Usage of Graph Neural Networks for Edge Prediction [51.06557652109059]
We propose a novel edge prediction paradigm named Edge-aware Message PassIng neuRal nEtworks (EMPIRE)
We first introduce an edge splitting technique to specify use of each edge where each edge is solely used as either the topology or the supervision.
In order to emphasize the differences between pairs connected by supervision edges and pairs unconnected, we further weight the messages to highlight the relative ones that can reflect the differences.
arXiv Detail & Related papers (2022-12-25T23:19:56Z) - Bring Your Own View: Graph Neural Networks for Link Prediction with
Personalized Subgraph Selection [57.34881616131377]
We introduce a Personalized Subgraph Selector (PS2) as a plug-and-play framework to automatically, personally, and inductively identify optimal subgraphs for different edges.
PS2 is instantiated as a bi-level optimization problem that can be efficiently solved differently.
We suggest a brand-new angle towards GNNLP training: by first identifying the optimal subgraphs for edges; and then focusing on training the inference model by using the sampled subgraphs.
arXiv Detail & Related papers (2022-12-23T17:30:19Z) - A Graph Is More Than Its Nodes: Towards Structured Uncertainty-Aware
Learning on Graphs [49.76175970328538]
We propose novel edgewise metrics, namely the edgewise expected calibration error (ECE) and the agree/disagree ECEs, which provide criteria for uncertainty estimation on graphs beyond the nodewise setting.
Our experiments demonstrate that the proposed edgewise metrics can complement the nodewise results and yield additional insights.
arXiv Detail & Related papers (2022-10-27T16:12:58Z) - DiP-GNN: Discriminative Pre-Training of Graph Neural Networks [49.19824331568713]
Graph neural network (GNN) pre-training methods have been proposed to enhance the power of GNNs.
One popular pre-training method is to mask out a proportion of the edges, and a GNN is trained to recover them.
In our framework, the graph seen by the discriminator better matches the original graph because the generator can recover a proportion of the masked edges.
arXiv Detail & Related papers (2022-09-15T17:41:50Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS)
BGCN-NRWS uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.
arXiv Detail & Related papers (2021-12-14T20:58:27Z) - Node Classification Meets Link Prediction on Knowledge Graphs [16.37145148171519]
We study the problems of transductive node classification over incomplete graphs and link prediction over graphs with node features.
Our model performs very strongly when compared to the respective state-of-the-art models for node classification and link prediction.
arXiv Detail & Related papers (2021-06-14T10:52:52Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.