Grouping Local Process Models
- URL: http://arxiv.org/abs/2311.03040v1
- Date: Mon, 6 Nov 2023 11:24:27 GMT
- Title: Grouping Local Process Models
- Authors: Viki Peeva, Wil M.P. van der Aalst
- Abstract summary: Local Process Model (LPM) discovery tries to build a set of LPMs that explain sub-behaviors of the process.
This work proposes a three-step pipeline for grouping similar LPMs using various process model similarity measures.
- Score: 0.19036571490366497
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, process mining emerged as a proven technology to analyze and
improve operational processes. An expanding range of organizations using
process mining in their daily operation brings a broader spectrum of processes
to be analyzed. Some of these processes are highly unstructured, making it
difficult for traditional process discovery approaches to discover a
start-to-end model describing the entire process. Therefore, the subdiscipline
of Local Process Model (LPM) discovery tries to build a set of LPMs, i.e.,
smaller models that explain sub-behaviors of the process. However, like other
pattern mining approaches, LPM discovery algorithms also face the problems of
model explosion and model repetition, i.e., the algorithms may create hundreds
if not thousands of models, and subsets of them are close in structure or
behavior. This work proposes a three-step pipeline for grouping similar LPMs
using various process model similarity measures. We demonstrate the usefulness
of grouping through a real-life case study, and analyze the impact of different
measures, the gravity of repetition in the discovered LPMs, and how it improves
after grouping on multiple real event logs.
Related papers
- A Comparative Study on Reasoning Patterns of OpenAI's o1 Model [69.08287909042421]
We show that OpenAI's o1 model has achieved the best performance on most datasets.
We also provide a detailed analysis on several reasoning benchmarks.
arXiv Detail & Related papers (2024-10-17T15:09:03Z) - Mining a Minimal Set of Behavioral Patterns using Incremental Evaluation [3.16536213610547]
Existing approaches to behavioral pattern mining suffer from two limitations.
First, they show limited scalability as incremental computation is incorporated only in the generation of pattern candidates.
Second, process analysis based on mined patterns shows limited effectiveness due to an overwhelmingly large number of patterns obtained in practical application scenarios.
arXiv Detail & Related papers (2024-02-05T11:41:37Z) - The WHY in Business Processes: Discovery of Causal Execution Dependencies [2.0811729303868005]
Unraveling causal relationships among the execution of process activities is a crucial element in predicting the consequences of process interventions.
This work offers a systematic approach to the unveiling of the causal business process by leveraging an existing causal discovery algorithm over activity timing.
Our methodology searches for such discrepancies between the two models in the context of three causal patterns, and derives a new view in which these inconsistencies are annotated over the mined process model.
arXiv Detail & Related papers (2023-10-23T14:23:15Z) - Discovering Hierarchical Process Models: an Approach Based on Events
Clustering [0.0]
We present an algorithm for discovering hierarchical process models represented as two-level workflow nets.
Unlike existing solutions, our algorithm does not impose restrictions on the process control flow and allows for iteration.
arXiv Detail & Related papers (2023-03-12T11:05:40Z) - Clustering Object-Centric Event Logs [0.36748639131154304]
We propose a clustering-based approach to cluster similar objects in OCELs to simplify the obtained process models.
Our approach reduces the complexity of the process models and generates coherent subsets of objects which help the end-users gain insights into the process.
arXiv Detail & Related papers (2022-07-26T09:16:39Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
The paper presents an approach to process mining providing semi-automatic support to model optimization.
A model simplification approach is proposed, which essentially abstracts the raw model at the desired granularity.
We aim to demonstrate the capabilities of the technological solution using three datasets from different applications in the healthcare domain.
arXiv Detail & Related papers (2022-06-10T16:20:59Z) - TaSPM: Targeted Sequential Pattern Mining [53.234101208024335]
We propose a generic framework namely TaSPM, based on the fast CM-SPAM algorithm.
We also propose several pruning strategies to reduce meaningless operations in mining processes.
Experiments show that the novel targeted mining algorithm TaSPM can achieve faster running time and less memory consumption.
arXiv Detail & Related papers (2022-02-26T17:49:47Z) - On Contrastive Representations of Stochastic Processes [53.21653429290478]
Learning representations of processes is an emerging problem in machine learning.
We show that our methods are effective for learning representations of periodic functions, 3D objects and dynamical processes.
arXiv Detail & Related papers (2021-06-18T11:00:24Z) - Discovering Hierarchical Processes Using Flexible Activity Trees for
Event Abstraction [7.754062965937491]
We propose FlexHMiner, a three-step approach to discover processes with multi-level interleaved subprocesses.
We used seven real-life logs to compare the qualities of hierarchical models discovered using domain knowledge, random clustering, and flat approaches.
Our results indicate that the hierarchical process models that the FlexHMiner generates compare favorably to approaches that do not exploit hierarchy.
arXiv Detail & Related papers (2020-10-16T10:50:41Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
A core task in process mining is process discovery which aims to learn an accurate process model from event log data.
In this paper, we propose to use (block-) structured programs directly as target process models.
We develop a novel bottom-up agglomerative approach to the discovery of such structured program process models.
arXiv Detail & Related papers (2020-08-13T10:33:10Z) - Learning Robust State Abstractions for Hidden-Parameter Block MDPs [55.31018404591743]
We leverage ideas of common structure from the HiP-MDP setting to enable robust state abstractions inspired by Block MDPs.
We derive instantiations of this new framework for both multi-task reinforcement learning (MTRL) and meta-reinforcement learning (Meta-RL) settings.
arXiv Detail & Related papers (2020-07-14T17:25:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.