The WHY in Business Processes: Discovery of Causal Execution Dependencies
- URL: http://arxiv.org/abs/2310.14975v2
- Date: Thu, 16 May 2024 14:56:37 GMT
- Title: The WHY in Business Processes: Discovery of Causal Execution Dependencies
- Authors: Fabiana Fournier, Lior Limonad, Inna Skarbovsky, Yuval David,
- Abstract summary: Unraveling causal relationships among the execution of process activities is a crucial element in predicting the consequences of process interventions.
This work offers a systematic approach to the unveiling of the causal business process by leveraging an existing causal discovery algorithm over activity timing.
Our methodology searches for such discrepancies between the two models in the context of three causal patterns, and derives a new view in which these inconsistencies are annotated over the mined process model.
- Score: 2.0811729303868005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unraveling the causal relationships among the execution of process activities is a crucial element in predicting the consequences of process interventions and making informed decisions regarding process improvements. Process discovery algorithms exploit time precedence as their main source of model derivation. Hence, a causal view can supplement process discovery, being a new perspective in which relations reflect genuine cause-effect dependencies among the tasks. This calls for faithful new techniques to discover the causal execution dependencies among the tasks in the process. To this end, our work offers a systematic approach to the unveiling of the causal business process by leveraging an existing causal discovery algorithm over activity timing. In addition, this work delves into a set of conditions under which process mining discovery algorithms generate a model that is incongruent with the causal business process model, and shows how the latter model can be methodologically employed for a sound analysis of the process. Our methodology searches for such discrepancies between the two models in the context of three causal patterns, and derives a new view in which these inconsistencies are annotated over the mined process model. We demonstrate our methodology employing two open process mining algorithms, the IBM Process Mining tool, and the LiNGAM causal discovery technique. We apply it on a synthesized dataset and on two open benchmark data sets.
Related papers
- A Systematic Review of Business Process Improvement: Achievements and Potentials in Combining Concepts from Operations Research and Business Process Management [0.0]
Business Process Management and Operations Research aim to enhance value creation in organizations.
This systematic literature review identifies and analyzes work that uses combined concepts from both disciplines.
Results indicate a strong focus on resource allocation and scheduling problems.
arXiv Detail & Related papers (2024-09-02T14:13:14Z) - Extracting Process-Aware Decision Models from Object-Centric Process
Data [54.04724730771216]
This paper proposes the first object-centric decision-mining algorithm called Integrated Object-centric Decision Discovery Algorithm (IODDA)
IODDA is able to discover how a decision is structured as well as how a decision is made.
arXiv Detail & Related papers (2024-01-26T13:27:35Z) - Discovering Hierarchical Process Models: an Approach Based on Events
Clustering [0.0]
We present an algorithm for discovering hierarchical process models represented as two-level workflow nets.
Unlike existing solutions, our algorithm does not impose restrictions on the process control flow and allows for iteration.
arXiv Detail & Related papers (2023-03-12T11:05:40Z) - Learning to Agree on Vision Attention for Visual Commonsense Reasoning [50.904275811951614]
A VCR model aims at answering a question regarding an image, followed by the rationale prediction for the preceding answering process.
Existing methods ignore the pivotal relationship between the two processes, leading to sub-optimal model performance.
This paper presents a novel visual attention alignment method to efficaciously handle these two processes in a unified framework.
arXiv Detail & Related papers (2023-02-04T07:02:29Z) - Prescriptive Process Monitoring: Quo Vadis? [64.39761523935613]
The paper studies existing methods in this field via a Systematic Literature Review ( SLR)
The SLR provides insights into challenges and areas for future research that could enhance the usefulness and applicability of prescriptive process monitoring methods.
arXiv Detail & Related papers (2021-12-03T08:06:24Z) - Process discovery on deviant traces and other stranger things [6.974048370610024]
We focus on declarative processes and embrace the less-popular view of process discovery as a binary supervised learning task.
We deepen how the valuable information brought by both these two sets can be extracted and formalised into a model that is "optimal" according to user-defined goals.
arXiv Detail & Related papers (2021-09-30T06:58:34Z) - Feature Recommendation for Structural Equation Model Discovery in
Process Mining [0.0]
We propose a method for finding the set of (aggregated) features with a possible effect on the problem.
We have implemented the proposed method as a plugin in ProM and we have evaluated it using two real and synthetic event logs.
arXiv Detail & Related papers (2021-08-13T12:23:01Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event-extraction is a sequence-to-sequence labeling task with a tag set composed of tags of triggers and entities.
We propose a Cross-Supervised Mechanism (CSM) to alternately supervise the extraction of triggers or entities.
Our approach outperforms the state-of-the-art methods in both entity and trigger extraction.
arXiv Detail & Related papers (2020-10-13T11:51:17Z) - Knowledge-Aware Procedural Text Understanding with Multi-Stage Training [110.93934567725826]
We focus on the task of procedural text understanding, which aims to comprehend such documents and track entities' states and locations during a process.
Two challenges, the difficulty of commonsense reasoning and data insufficiency, still remain unsolved.
We propose a novel KnOwledge-Aware proceduraL text understAnding (KOALA) model, which effectively leverages multiple forms of external knowledge.
arXiv Detail & Related papers (2020-09-28T10:28:40Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
A core task in process mining is process discovery which aims to learn an accurate process model from event log data.
In this paper, we propose to use (block-) structured programs directly as target process models.
We develop a novel bottom-up agglomerative approach to the discovery of such structured program process models.
arXiv Detail & Related papers (2020-08-13T10:33:10Z) - A Technique for Determining Relevance Scores of Process Activities using
Graph-based Neural Networks [0.0]
We develop a technique to determine the relevance scores for process activities with respect to performance measures.
Annotating process models with such relevance scores facilitates a problem-focused analysis of the business process.
We quantitatively evaluate the predictive quality of our technique using four datasets from different domains, to demonstrate the faithfulness of the relevance scores.
arXiv Detail & Related papers (2020-08-07T12:15:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.