論文の概要: DeepInception: Hypnotize Large Language Model to Be Jailbreaker
- arxiv url: http://arxiv.org/abs/2311.03191v5
- Date: Thu, 28 Nov 2024 13:43:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:16:44.962185
- Title: DeepInception: Hypnotize Large Language Model to Be Jailbreaker
- Title(参考訳): DeepInception: 大きな言語モデルをジェイルブレーカーにする
- Authors: Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao, Tongliang Liu, Bo Han,
- Abstract要約: 大規模言語モデル(LLM)は様々な用途で大きく成功しているが、相変わらず敵のジェイルブレイクの影響を受けやすい。
LLMのパーソナライズ機能を活用して$textita仮想ネストシーンを構築する手法を提案する。
経験的に,本手法によって引き起こされた内容は,従来と異なる有害度率を達成することができる。
- 参考スコア(独自算出の注目度): 70.34096187718941
- License:
- Abstract: Large language models (LLMs) have succeeded significantly in various applications but remain susceptible to adversarial jailbreaks that void their safety guardrails. Previous attempts to exploit these vulnerabilities often rely on high-cost computational extrapolations, which may not be practical or efficient. In this paper, inspired by the authority influence demonstrated in the Milgram experiment, we present a lightweight method to take advantage of the LLMs' personification capabilities to construct $\textit{a virtual, nested scene}$, allowing it to realize an adaptive way to escape the usage control in a normal scenario. Empirically, the contents induced by our approach can achieve leading harmfulness rates with previous counterparts and realize a continuous jailbreak in subsequent interactions, which reveals the critical weakness of self-losing on both open-source and closed-source LLMs, $\textit{e.g.}$, Llama-2, Llama-3, GPT-3.5, GPT-4, and GPT-4o. The code and data are available at: https://github.com/tmlr-group/DeepInception.
- Abstract(参考訳): 大規模言語モデル(LLM)は様々な用途で大きく成功しているが、安全ガードレールを無効にした敵のジェイルブレイクの影響を受けやすいままである。
これらの脆弱性を悪用する以前の試みは、しばしば高コストの計算外挿に頼っている。
本稿では,ミルグラム実験で実証された権威の影響に触発されて,LLMの擬人化機能を利用して$\textit{a virtual, nested scene}$を構築するための軽量な手法を提案する。
実験的に,本手法によって引き起こされた内容は, 先行する相手との有害度を最大化し, 後続の相互作用において連続的ジェイルブレイクを実現することが可能であり, オープンソースおよびクローズドソースLLM, $\textit{e g }$, Llama-2, Llama-3, GPT-3.5, GPT-4, GPT-4oにおける自己損失の致命的弱点を明らかにする。
コードとデータは、https://github.com/tmlr-group/DeepInception.comで入手できる。
関連論文リスト
- AdaPPA: Adaptive Position Pre-Fill Jailbreak Attack Approach Targeting LLMs [34.221522224051846]
大規模言語モデル(LLM)に対するジェイルブレイク攻撃を適応的に行うための適応的位置補充型ジェイルブレイク攻撃手法を提案する。
提案手法は,提案モデルの命令追従能力を利用して,まず安全なコンテンツを出力し,次にその物語シフト能力を利用して有害なコンテンツを生成する。
本手法は,従来の手法と比較して,広く認識されているセキュアモデル(Llama2)において,攻撃成功率を47%向上させることができる。
論文 参考訳(メタデータ) (2024-09-11T00:00:58Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
本稿では,ObscurePrompt for jailbreaking LLMを紹介し,OOD(Out-of-Distribution)データにおける脆弱なアライメントに着想を得た。
まず、脱獄過程における決定境界を定式化し、次にLLMの倫理的決定境界に不明瞭な文章がどう影響するかを考察する。
本手法は,2つの防御機構に対する有効性を保ちながら,攻撃効果の観点から従来の手法を大幅に改善する。
論文 参考訳(メタデータ) (2024-06-19T16:09:58Z) - SelfDefend: LLMs Can Defend Themselves against Jailbreaking in a Practical Manner [21.414701448926614]
本稿では,自衛隊(SelfDefend)と呼ばれる総称LDMジェイルブレイク防御フレームワークを紹介する。
主要なjailbreak攻撃に対して,メインストリームのGPT-3.5/4モデルを使用することを実証的に検証した。
防衛の堅牢性をさらに向上し、コストを最小化するために、我々は専用のオープンソース防衛モデルをチューニングするためにデータ蒸留アプローチを採用している。
論文 参考訳(メタデータ) (2024-06-08T15:45:31Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
既存のジェイルブレイク法は計算コストがかかる。
我々は、弱々しく強固な脱獄攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-30T18:48:37Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
大規模言語モデル(LLM)は、敵のジェイルブレイクに対して脆弱である。
LLMへのブラックボックスアクセスのみのセマンティックジェイルブレイクを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T15:38:28Z) - Multilingual Jailbreak Challenges in Large Language Models [96.74878032417054]
本研究では,大規模言語モデル(LLM)における多言語ジェイルブレイク問題の存在を明らかにする。
我々は、意図しないシナリオと意図的なシナリオの2つを考えます。
安全な微調整のための多言語学習データを自動的に生成する新しいtextscSelf-Defense フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-10T09:44:06Z) - Self-Deception: Reverse Penetrating the Semantic Firewall of Large
Language Models [13.335189124991082]
本稿では, LLM ジェイルブレイク問題を調査し, 自動ジェイルブレイク手法を初めて提案する。
従来のファイアウォールを逆のトンネルで貫く攻撃にインスパイアされた私たちは、セマンティックファイアウォールをバイパスできる"自己認識"アタックを導入しました。
私たちは7つの仮想シナリオで6つの言語で合計2,520の攻撃ペイロードを生成しました。
論文 参考訳(メタデータ) (2023-08-16T09:04:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。