Functional Neural Networks: Shift invariant models for functional data
with applications to EEG classification
- URL: http://arxiv.org/abs/2301.05869v2
- Date: Thu, 10 Aug 2023 12:35:11 GMT
- Title: Functional Neural Networks: Shift invariant models for functional data
with applications to EEG classification
- Authors: Florian Heinrichs, Mavin Heim, Corinna Weber
- Abstract summary: We introduce a new class of neural networks that are shift invariant and preserve smoothness of the data: functional neural networks (FNNs)
For this, we use methods from functional data analysis (FDA) to extend multi-layer perceptrons and convolutional neural networks to functional data.
We show that the models outperform a benchmark model from FDA in terms of accuracy and successfully use FNNs to classify electroencephalography (EEG) data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is desirable for statistical models to detect signals of interest
independently of their position. If the data is generated by some smooth
process, this additional structure should be taken into account. We introduce a
new class of neural networks that are shift invariant and preserve smoothness
of the data: functional neural networks (FNNs). For this, we use methods from
functional data analysis (FDA) to extend multi-layer perceptrons and
convolutional neural networks to functional data. We propose different model
architectures, show that the models outperform a benchmark model from FDA in
terms of accuracy and successfully use FNNs to classify electroencephalography
(EEG) data.
Related papers
- A Hierarchical Fused Quantum Fuzzy Neural Network for Image Classification [8.7057403071943]
We proposed a novel hierarchical fused quantum fuzzy neural network (HQFNN)
HQFNN uses quantum neural networks to learn fuzzy membership functions in fuzzy neural network.
Results show that the proposed model can outperform several existing methods.
arXiv Detail & Related papers (2024-03-14T12:09:36Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
Neuromorphic computing relies on spike-based, energy-efficient communication.
We develop a tool to identify suitable configurations for neuron-based encoding of sample-based data into spike trains.
The WaLiN-GUI is provided open source and with documentation.
arXiv Detail & Related papers (2023-10-25T20:34:08Z) - Investigating Neuron Disturbing in Fusing Heterogeneous Neural Networks [6.389882065284252]
In this paper, we reveal the phenomenon of neuron disturbing, where neurons from heterogeneous local models interfere with each other mutually.
We propose an experimental method that excludes neuron disturbing and fuses neural networks via adaptively selecting a local model, called AMS, to execute the prediction.
arXiv Detail & Related papers (2022-10-24T06:47:48Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - A Statistical-Modelling Approach to Feedforward Neural Network Model Selection [0.8287206589886881]
Feedforward neural networks (FNNs) can be viewed as non-linear regression models.
A novel model selection method is proposed using the Bayesian information criterion (BIC) for FNNs.
The choice of BIC over out-of-sample performance leads to an increased probability of recovering the true model.
arXiv Detail & Related papers (2022-07-09T11:07:04Z) - Deep Neural Network Classifier for Multi-dimensional Functional Data [4.340040784481499]
We propose a new approach, called as functional deep neural network (FDNN), for classifying multi-dimensional functional data.
Specifically, a deep neural network is trained based on the principle components of the training data which shall be used to predict the class label of a future data function.
arXiv Detail & Related papers (2022-05-17T19:22:48Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Non-linear Functional Modeling using Neural Networks [6.624726878647541]
We introduce a new class of non-linear models for functional data based on neural networks.
We propose two variations of our framework: a functional neural network with continuous hidden layers, and a second version that utilizes basis expansions and continuous hidden layers.
arXiv Detail & Related papers (2021-04-19T14:59:55Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Flexible Transmitter Network [84.90891046882213]
Current neural networks are mostly built upon the MP model, which usually formulates the neuron as executing an activation function on the real-valued weighted aggregation of signals received from other neurons.
We propose the Flexible Transmitter (FT) model, a novel bio-plausible neuron model with flexible synaptic plasticity.
We present the Flexible Transmitter Network (FTNet), which is built on the most common fully-connected feed-forward architecture.
arXiv Detail & Related papers (2020-04-08T06:55:12Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.