Neural Structure Learning with Stochastic Differential Equations
- URL: http://arxiv.org/abs/2311.03309v2
- Date: Sun, 5 May 2024 21:38:08 GMT
- Title: Neural Structure Learning with Stochastic Differential Equations
- Authors: Benjie Wang, Joel Jennings, Wenbo Gong,
- Abstract summary: We introduce a novel structure learning method, SCOTCH, which combines neural differential equations with variational inference to infer a posterior distribution over possible structures.
This continuous-time approach can naturally handle both learning from and predicting observations at arbitrary time points.
- Score: 9.076396370870423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discovering the underlying relationships among variables from temporal observations has been a longstanding challenge in numerous scientific disciplines, including biology, finance, and climate science. The dynamics of such systems are often best described using continuous-time stochastic processes. Unfortunately, most existing structure learning approaches assume that the underlying process evolves in discrete-time and/or observations occur at regular time intervals. These mismatched assumptions can often lead to incorrect learned structures and models. In this work, we introduce a novel structure learning method, SCOTCH, which combines neural stochastic differential equations (SDE) with variational inference to infer a posterior distribution over possible structures. This continuous-time approach can naturally handle both learning from and predicting observations at arbitrary time points. Theoretically, we establish sufficient conditions for an SDE and SCOTCH to be structurally identifiable, and prove its consistency under infinite data limits. Empirically, we demonstrate that our approach leads to improved structure learning performance on both synthetic and real-world datasets compared to relevant baselines under regular and irregular sampling intervals.
Related papers
- OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Latent Traversals in Generative Models as Potential Flows [113.4232528843775]
We propose to model latent structures with a learned dynamic potential landscape.
Inspired by physics, optimal transport, and neuroscience, these potential landscapes are learned as physically realistic partial differential equations.
Our method achieves both more qualitatively and quantitatively disentangled trajectories than state-of-the-art baselines.
arXiv Detail & Related papers (2023-04-25T15:53:45Z) - Neural Continuous-Discrete State Space Models for Irregularly-Sampled
Time Series [18.885471782270375]
NCDSSM employs auxiliary variables to disentangle recognition from dynamics, thus requiring amortized inference only for the auxiliary variables.
We propose three flexible parameterizations of the latent dynamics and an efficient training objective that marginalizes the dynamic states during inference.
Empirical results on multiple benchmark datasets show improved imputation and forecasting performance of NCDSSM over existing models.
arXiv Detail & Related papers (2023-01-26T18:45:04Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - STRODE: Stochastic Boundary Ordinary Differential Equation [30.237665903943963]
Most algorithms for time-series modeling fail to learn dynamics of random event timings directly from visual or audio inputs.
We present a probabilistic ordinary differential equation (ODE) that learns both the timings and the dynamics of time series data without requiring any timing annotations during training.
Our results show that our approach successfully infers event timings of time series data.
arXiv Detail & Related papers (2021-07-17T16:25:46Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
Contrastive learning is a family of self-supervised methods where a model is trained to solve a classification task constructed from unlabeled data.
We show that a properly constructed contrastive learning task can be used to estimate the transition kernel for small-to-mid-range intervals in the diffusion case.
arXiv Detail & Related papers (2021-03-03T23:06:47Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z) - Structure learning for CTBN's via penalized maximum likelihood methods [2.997206383342421]
We study the structure learning problem, which is a more challenging task and the existing research on this topic is limited.
We prove that our algorithm, under mild regularity conditions, recognizes the dependence structure of the graph with high probability.
arXiv Detail & Related papers (2020-06-13T14:28:19Z) - Learning Continuous-Time Dynamics by Stochastic Differential Networks [32.63114111531396]
We propose a flexible continuous-time recurrent neural network named Variational Differential Networks (VSDN)
VSDN embeds the complicated dynamics of the sporadic time series by neural Differential Equations (SDE)
We show that VSDNs outperform state-of-the-art continuous-time deep learning models and achieve remarkable performance on prediction and tasks for sporadic time series.
arXiv Detail & Related papers (2020-06-11T01:40:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.