論文の概要: Unsupervised Region-Growing Network for Object Segmentation in Atmospheric Turbulence
- arxiv url: http://arxiv.org/abs/2311.03572v2
- Date: Mon, 5 Aug 2024 01:05:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 00:06:03.790720
- Title: Unsupervised Region-Growing Network for Object Segmentation in Atmospheric Turbulence
- Title(参考訳): 大気乱流における物体セグメンテーションのための非教師付き領域探索ネットワーク
- Authors: Dehao Qin, Ripon Saha, Suren Jayasuriya, Jinwei Ye, Nianyi Li,
- Abstract要約: 大気乱流による動画中の移動物体のセグメンテーションに対する教師なしのアプローチを提案する。
まず、高信頼で動く物体の小さな集合を識別し、その後、これらの種子から徐々に前景マスクを成長させ、すべての動く物体を分割する。
その結果, 移動物体のセグメンテーションにおける精度は良好であり, 様々な乱流強度を持つ長距離ビデオに対してロバストであることがわかった。
- 参考スコア(独自算出の注目度): 10.8380383565446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Moving object segmentation in the presence of atmospheric turbulence is highly challenging due to turbulence-induced irregular and time-varying distortions. In this paper, we present an unsupervised approach for segmenting moving objects in videos downgraded by atmospheric turbulence. Our key approach is a detect-then-grow scheme: we first identify a small set of moving object pixels with high confidence, then gradually grow a foreground mask from those seeds to segment all moving objects. This method leverages rigid geometric consistency among video frames to disentangle different types of motions, and then uses the Sampson distance to initialize the seedling pixels. After growing per-frame foreground masks, we use spatial grouping loss and temporal consistency loss to further refine the masks in order to ensure their spatio-temporal consistency. Our method is unsupervised and does not require training on labeled data. For validation, we collect and release the first real-captured long-range turbulent video dataset with ground truth masks for moving objects. Results show that our method achieves good accuracy in segmenting moving objects and is robust for long-range videos with various turbulence strengths.
- Abstract(参考訳): 大気乱流の存在下での移動物体のセグメンテーションは非常に困難である。
本稿では,大気乱流による動画中の移動物体のセグメンテーションに関する教師なしのアプローチを提案する。
我々はまず、高い信頼性で動く物体の小さなセットを識別し、その種から徐々に前景のマスクを成長させ、すべての動く物体を分割する。
この手法はビデオフレーム間の幾何的整合性を利用して異なる種類の動きを歪め、サンプソン距離を使って苗のピクセルを初期化する。
フレームごとのフォアグラウンドマスクを成長させた後、空間的グルーピング損失と時間的一貫性損失を用いてマスクをさらに洗練し、その時空間的一貫性を確保する。
本手法は教師なしで,ラベル付きデータのトレーニングは不要である。
検証のために、物体を動かすための地上の真理マスクを備えた、最初のリアルタイムな長距離乱流ビデオデータセットを収集し、リリースする。
その結果, 移動物体のセグメンテーションにおける精度は良好であり, 様々な乱流強度を持つ長距離ビデオに対してロバストであることがわかった。
関連論文リスト
- Lester: rotoscope animation through video object segmentation and
tracking [0.0]
レスターはビデオからレトロスタイルの2Dアニメーションを自動的に合成する新しい方法である。
ビデオフレームはSAM(Segment Anything Model)で処理され、結果のマスクは後のフレームを通してDeAOTで追跡される。
その結果,提案手法は時間的整合性に優れており,ポーズや外観の異なる映像を正しく処理できることがわかった。
論文 参考訳(メタデータ) (2024-02-15T11:15:54Z) - InstMove: Instance Motion for Object-centric Video Segmentation [70.16915119724757]
本研究では,オブジェクト中心ビデオのインスタンス・モーションを表すInstMoveとインスタンス・レベル・モーションについて検討する。
InstMoveは主に画像特徴の埋め込みのないインスタンスレベルのモーション情報に依存している。
数行のコードだけで、InstMoveは3つの異なるビデオセグメンテーションタスクのために、現在のSOTAメソッドに統合できる。
論文 参考訳(メタデータ) (2023-03-14T17:58:44Z) - Towards Robust Video Object Segmentation with Adaptive Object
Calibration [18.094698623128146]
ビデオオブジェクトセグメンテーション(VOS)は、参照フレームの注釈付きオブジェクトマスクを与えられたビデオのすべてのターゲットフレームにおけるオブジェクトのセグメンテーションを目的としている。
本稿では,オブジェクト表現を適応的に構築し,オブジェクトマスクを校正して強靭性を実現する,新しいディープネットワークを提案する。
本モデルは,既存の出版作品の最先端性能を達成し,摂動に対する優れた堅牢性を示す。
論文 参考訳(メタデータ) (2022-07-02T17:51:29Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
本稿では,新しいビデオカモフラージュオブジェクト検出(VCOD)フレームワークを提案する。
短期的および長期的整合性を利用して、ビデオフレームからカモフラージュされたオブジェクトを検出する。
論文 参考訳(メタデータ) (2022-03-14T17:55:41Z) - Object Propagation via Inter-Frame Attentions for Temporally Stable
Video Instance Segmentation [51.68840525174265]
ビデオインスタンスセグメンテーションは、ビデオ内のオブジェクトを検出し、セグメンテーションし、追跡することを目的としている。
現在のアプローチでは、画像レベルのセグメンテーションアルゴリズムを時間領域に拡張している。
本稿では,検出の欠如による問題を解消するビデオインスタンス分割手法を提案する。
論文 参考訳(メタデータ) (2021-11-15T04:15:57Z) - Occlusion-Aware Video Object Inpainting [72.38919601150175]
本稿では,映像における隠蔽物体の完全な形状と外観を復元する,隠蔽型映像オブジェクトの塗装について述べる。
我々の技術貢献であるVOINは、ビデオオブジェクト形状の完成と隠蔽テクスチャ生成を共同で行う。
より現実的な結果を得るために、VOINはT-PatchGANと新しい時間的YouTubeアテンションベースのマルチクラス識別器の両方を使用して最適化されている。
論文 参考訳(メタデータ) (2021-08-15T15:46:57Z) - Generating Masks from Boxes by Mining Spatio-Temporal Consistencies in
Videos [159.02703673838639]
フレーム毎のバウンディングボックスアノテーションからセグメンテーションマスクを生成する手法を動画で紹介します。
得られた正確なマスクを用いて、ビデオオブジェクトセグメンテーション(VOS)ネットワークの弱い教師付きトレーニングを行う。
追加データは、VOSとより困難なトラッキングドメインの両方で最先端の結果をもたらす大幅に優れた一般化パフォーマンスを提供します。
論文 参考訳(メタデータ) (2021-01-06T18:56:24Z) - Event-based Motion Segmentation with Spatio-Temporal Graph Cuts [51.17064599766138]
イベントベースカメラで取得したオブジェクトを独立に識別する手法を開発した。
この方法は、予想される移動物体の数を事前に決定することなく、技術状態よりも同等以上の性能を発揮する。
論文 参考訳(メタデータ) (2020-12-16T04:06:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。