論文の概要: Unsupervised convolutional neural network fusion approach for change
detection in remote sensing images
- arxiv url: http://arxiv.org/abs/2311.03679v1
- Date: Tue, 7 Nov 2023 03:10:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-08 17:18:13.840178
- Title: Unsupervised convolutional neural network fusion approach for change
detection in remote sensing images
- Title(参考訳): unsupervised convolutional neural network fusion approachによるリモートセンシング画像の変化検出
- Authors: Weidong Yan, Pei Yan, Li Cao
- Abstract要約: 我々は、変化検出のための全く教師なし浅層畳み込みニューラルネットワーク(USCNN)融合アプローチを導入する。
我々のモデルには3つの特徴がある: トレーニングプロセス全体は教師なしで行われ、ネットワークアーキテクチャは浅く、目的関数はスパースである。
4つの実リモートセンシングデータセットの実験結果から,提案手法の有効性と有効性が確認された。
- 参考スコア(独自算出の注目度): 1.892026266421264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of deep learning, a variety of change detection
methods based on deep learning have emerged in recent years. However, these
methods usually require a large number of training samples to train the network
model, so it is very expensive. In this paper, we introduce a completely
unsupervised shallow convolutional neural network (USCNN) fusion approach for
change detection. Firstly, the bi-temporal images are transformed into
different feature spaces by using convolution kernels of different sizes to
extract multi-scale information of the images. Secondly, the output features of
bi-temporal images at the same convolution kernels are subtracted to obtain the
corresponding difference images, and the difference feature images at the same
scale are fused into one feature image by using 1 * 1 convolution layer.
Finally, the output features of different scales are concatenated and a 1 * 1
convolution layer is used to fuse the multi-scale information of the image. The
model parameters are obtained by a redesigned sparse function. Our model has
three features: the entire training process is conducted in an unsupervised
manner, the network architecture is shallow, and the objective function is
sparse. Thus, it can be seen as a kind of lightweight network model.
Experimental results on four real remote sensing datasets indicate the
feasibility and effectiveness of the proposed approach.
- Abstract(参考訳): 近年,ディープラーニングの急速な発展に伴い,ディープラーニングに基づくさまざまな変化検出手法が登場している。
しかし、これらの手法は通常、ネットワークモデルをトレーニングするために多数のトレーニングサンプルを必要とするため、非常に高価である。
本稿では,変化検出のための完全教師なし浅層畳み込みニューラルネットワーク(USCNN)融合手法を提案する。
まず、異なる大きさの畳み込み核を用いて画像のマルチスケール情報を抽出することにより、バイタイムイメージを異なる特徴空間に変換する。
次に、同一畳み込み核における双時間画像の出力特性を減算して対応する差分画像を得るとともに、1*1畳み込み層を用いて同一スケールの差分特徴画像を1つの特徴画像に融合させる。
最後に、異なるスケールの出力特徴を連結し、1×1の畳み込み層を用いて画像のマルチスケール情報を融合する。
モデルパラメータは再設計されたスパース関数によって得られる。
我々のモデルには3つの特徴がある: トレーニングプロセス全体は教師なしで行われ、ネットワークアーキテクチャは浅く、目的関数はスパースである。
したがって、それは一種の軽量ネットワークモデルと見なすことができる。
4つの実リモートセンシングデータセットの実験結果は,提案手法の有効性と有効性を示している。
関連論文リスト
- Lightweight single-image super-resolution network based on dual paths [0.552480439325792]
ディープラーニングのシングルイメージ超解像(SISR)アルゴリズムには,畳み込みニューラルネットワークとTransformerに基づく2つのモデルがある。
本稿では,2方向相補的畳み込みとトランスフォーマーに基づく,軽量なマルチスケール機能融合ネットワークモデルを提案する。
論文 参考訳(メタデータ) (2024-09-10T15:31:37Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Scale Attention for Learning Deep Face Representation: A Study Against
Visual Scale Variation [69.45176408639483]
我々はスケール空間理論に頼って凸層を再構築する。
我々はSCale AttentioN Conv Neural Network(textbfSCAN-CNN)という新しいスタイルを構築した。
単発方式として、推論はマルチショット融合よりも効率的である。
論文 参考訳(メタデータ) (2022-09-19T06:35:04Z) - dual unet:a novel siamese network for change detection with cascade
differential fusion [4.651756476458979]
本稿では,変化検出タスク,すなわちDual-UNetのための新しいSiameseニューラルネットワークを提案する。
従来のバイテンポラル画像の符号化とは対照的に,画素の空間的差分関係に着目したエンコーダ差分アテンションモジュールを設計する。
実験により、提案手法は、一般的な季節変化検出データセットにおいて、常に最も高度な手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-12T14:24:09Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Point-Cloud Deep Learning of Porous Media for Permeability Prediction [0.0]
デジタル画像から多孔質媒体の透過性を予測するための新しいディープラーニングフレームワークを提案する。
我々は、固体行列と細孔空間の境界を点雲としてモデル化し、それらをポイントネットアーキテクチャに基づくニューラルネットワークへの入力として供給する。
論文 参考訳(メタデータ) (2021-07-18T22:59:21Z) - ResMLP: Feedforward networks for image classification with
data-efficient training [73.26364887378597]
画像分類のための多層パーセプトロン上に構築されたアーキテクチャであるResMLPを提案する。
Timmライブラリと事前トレーニングされたモデルに基づいたコードを共有します。
論文 参考訳(メタデータ) (2021-05-07T17:31:44Z) - Exploiting Invariance in Training Deep Neural Networks [4.169130102668252]
動物視覚システムの2つの基本的なメカニズムに触発され、ディープニューラルネットワークのトレーニングに不変性を与える特徴変換技術を紹介します。
結果として得られるアルゴリズムはパラメータチューニングを少なくし、初期学習率1.0でうまくトレーニングし、異なるタスクに簡単に一般化する。
ImageNet、MS COCO、Cityscapesデータセットでテストされた当社の提案手法は、トレーニングにより少ないイテレーションを必要とし、すべてのベースラインを大きなマージンで上回り、小規模および大規模のバッチサイズのトレーニングをシームレスに行い、画像分類、オブジェクト検出、セマンティックセグメンテーションの異なるコンピュータビジョンタスクに適用します。
論文 参考訳(メタデータ) (2021-03-30T19:18:31Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
我々は,観測された空間コンテキストを捉えるために,グラフ伝搬を採用することを提案する。
次に、注意機構を伝搬に適用し、ネットワークが文脈情報を適応的にモデル化することを奨励する。
最後に、抽出したマルチモーダル特徴を効果的に活用するための対称ゲート融合戦略を導入する。
本稿では,Adaptive Context-Aware Multi-Modal Network (ACMNet) を2つのベンチマークで評価した。
論文 参考訳(メタデータ) (2020-08-25T06:00:06Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
畳み込みニューラルネットワーク(CNN)は、入力解像度の変化に関して予測可能な認識動作を持たない。
我々はメタラーナーを用いて、様々な入力スケールのメインネットワークの畳み込み重みを生成する。
さらに、異なる入力解像度に基づいて、モデル予測よりもフライでの知識蒸留を利用する。
論文 参考訳(メタデータ) (2020-07-13T04:27:25Z) - Extracting dispersion curves from ambient noise correlations using deep
learning [1.0237120900821557]
本研究では,表面波の分散曲線の位相を分類する機械学習手法を提案する。
受信機のアレイで観測された表面の標準FTAN解析を画像に変換する。
我々は、教師付き学習目標を備えた畳み込みニューラルネットワーク(U-net)アーキテクチャを使用し、伝達学習を取り入れる。
論文 参考訳(メタデータ) (2020-02-05T23:41:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。